Skip to main content
Log in

Non-prespecified Starting Depot Formulations for Minimum-Distance Trajectory Optimization in Patrolling Problem

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, two new formulations are presented for trajectory optimization in the patrolling problem. It is assumed that the starting depot is not prespecified; an assumption that distinguishes the present work from the existing literature. A number of viewpoints are assigned to be visited in a certain sequence to minimize the total travel distance. The problem turns out to be a variant of the well-known Traveling Salesmen Problem (TSP), namely the Single depot multiple Traveling Salesmen Problem (mTSP). Comparisons between the commonly-used prespecified starting depot approach and the proposed formulations are performed and the efficacy of the results is presented through simulations. It is noted that by using the new approach, the total travel distance can be improved by an average of about 20 % compared to the case where the starting depot is prespecified, and by about 40 % in the worst-case scenario (in terms of the starting depot).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pasqualetti, F., Franchi, A., Bullo, F.: On cooperative patrolling: Optimal trajectories, complexity analysis, and approximation algorithms. IEEE Trans. Robot. 28(3), 592–606 (2012)

    Article  Google Scholar 

  2. Clark, J., Fierro, R.: Mobile robotic sensors for perimeter detection and tracking. ISA Trans. 46, 3–13 (2007)

    Article  Google Scholar 

  3. Kingston, D., Beard, R.W., Holt, R.S.: Decentralized perimeter surveillance using a team of UAVs. IEEE Trans Robot. 24(6), 1394–1404 (2008)

    Article  Google Scholar 

  4. Susca, S., Bullo, F., Martinez, S.: Monitoring environmental boundaries with a robotic sensor network. IEEE Trans. Control Syst. Technol. 16(2), 288–296 (2008)

    Article  Google Scholar 

  5. Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems (2008)

  6. Pasqualetti, F., Durham, J.W., Bullo, F.: Cooperative patrolling viaweighted tours: Performance analysis and distributed algorithms. IEEE Trans. Robot. 28(5), 1181 –1188 (2012)

    Article  Google Scholar 

  7. Portugal, D., Rocha, R.P.: Distributed multi-robot patrol: A scalable and fault-tolerant framework. Robot. Auton. Syst 61(12), 1572 –1587 (2013)

    Article  Google Scholar 

  8. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209 –219 (2006)

    Article  MathSciNet  Google Scholar 

  9. Svestka, J.A., Huckfeldt, V.E.: Computational experience with an m-salesman traveling salesman algorithm. Manag. Sci. 19(7), 790 –799 (1973)

    Article  MATH  Google Scholar 

  10. Angel, R.D., Caudle, W.L., Noonan, R., Whinston, A.: Computer assisted school bus scheduling. Manag. Sci. 18(6), 279–288 (1972)

    Article  Google Scholar 

  11. Brumitt, B.L., Stentz, A.: Dynamic mission planning for multiple mobile robots. Proc. IEEE Int. Conf. Robot. Autom. 3, 2396–2401 (1996)

    Article  Google Scholar 

  12. Brumitt, B.L.: Grammps: a generalized mission planner for multiple mobile robots in unstructured environments. Proc. IEEE Int. Conf. Robot. Autom. 2, 1564–1571 (1998)

    Google Scholar 

  13. Yu, Z., Jinhai, L., Guochang, G., Rubo, Z., Haiyan, Y.: An implementation of evolutionary computation for path planning of cooperative mobile robots. Proc. 4th World Congress Intell. Control Autom. 3, 1798–1802 (2002)

    Google Scholar 

  14. Ryan, J., Bailey, T., Moore, J., Carlton, W.: Reactive tabu search in unmanned aerial reconnaissance simulations. Proc. Winter Simul. Conf. 1, 873 – 879 (1998)

    Article  Google Scholar 

  15. Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman problems and its variations. Eur. J. Oper. Res. 174(3), 1449–1458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghadiry, W., Habibi, J., Aghdam, A., Zhang, Y.: A new formulation for energy-efficient trajectory optimization in patrolling problem with non-pre-defined starting depot. In: Proceedings of the 10th International Conference on Intelligent Unmanned Systems (2014)

  17. Mosek 7.0 optimization software (2009)

  18. Gurobi 6.0 optimization software (2014)

  19. Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23, 91 –100 (2016)

    Article  Google Scholar 

  20. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the arma, arima, and the autoregressive artificial neural network models in forecasting the monthly inflow of dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  21. Valipour, M., Sefidkouhi, M.A.G., Eslamian, S.: Surface irrigation simulation models: a review. Int. J. Hydrol. Sci. Technol. 5, 51–70 (2015)

    Article  Google Scholar 

  22. Valipour, M.: Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J. Agric. Sci. 4, 125–133 (2012)

    Google Scholar 

  23. Khasraghi, M.M., Sefidkouhi, M.G., Valipour, M.: Simulation of open- and closed-end border irrigation systems using sirmod. Arch. Agron. Soil Sci. 61, 929–941 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walaaeldin Ghadiry.

Additional information

This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Discovery Grant Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiry, W., Habibi, J., G. Aghdam, A. et al. Non-prespecified Starting Depot Formulations for Minimum-Distance Trajectory Optimization in Patrolling Problem. J Intell Robot Syst 87, 699–710 (2017). https://doi.org/10.1007/s10846-017-0496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0496-7

Keywords

Navigation