Skip to main content
Log in

A Highly Accurate Model-Free Motion Control System with a Mamdani Fuzzy Feedback Controller combined with a TSK Fuzzy Feed-forward Controller

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a new intelligent robot motion control architecture – a highly accurate model-free fuzzy motion control- is proposed in order to achieve improved robot motion accuracy and dynamic performance. Its architecture combines a Mamdani fuzzy proportional (P) and a conventional integral (I) plus derivative (D) controller for the feedback part of the system, and a Takagi-Sugeno-Kang fuzzy controller for the feed-forward, nonlinear part. The fuzzy P + ID controller improves the performance of the nonlinear system, and the TSK fuzzy controller uses a TSK fuzzy inference system based on extended subtractive- clustering method which integrates information on joint angular displacement, velocity and acceleration for torque identification. The advantage of this kind of model-free control is that it uses the information directly from the input/output of the nonlinear system, without any complex robot model computation, in order to decrease the control system’s sensitivity to any dynamical uncertainty. Furthermore, parametric search for clustering parameters in extended subtractive clustering secures the high accuracy of the system identification. Consequently, this proposed model-free fuzzy motion control benefits from the advantages of two kinds of fuzzy system. It not only incorporates flexible design, good performance and simple conception but also ensures precise motion control and great robustness. Comparisons with other intelligent models and results from numerical studies on a 4-bar planar parallel mechanism show the effectiveness and competitiveness of the proposed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AI:

artificial intelligence

AMFFMC:

accurate model-free fuzzy motion control

ANFIS:

adaptive network-based fuzzy inference system

FIS:

fuzzy inference system

FL:

fuzzy logic

FLC:

fuzzy logic control

FLS:

fuzzy logic system

fuzzy P + ID:

fuzzy logic proportional plus conventional integral and derivative

MF:

membership function

MF-PID-FLC:

model-free PID fuzzy feed forward control

MISO:

multi-input–single-output

NN:

neural network

PID:

proportional, integral, derivative

RMSE:

root-mean-square-error

TSK:

Takagi-Sugeno-Kang

References

  1. Akbas, K.: Application of Neural Networks to Modeling and Control of Parallel Manipulators. In: Ryu, J. H. (ed.) Parallel Manipulators, New Developments, pp. 21–40. I-Tech Education and Publishing, Vienna, Austria (2008)

  2. AL-Saedi, M., Wu, H., Handroos, H.: ANFIS And fuzzy tuning of PID controller for trajectory tracking of a flexible hydraulically driven parallel robot machine. Journal of Automation and Control Engineering 1(3), 70–77 (2013)

    Article  Google Scholar 

  3. Astrom, K.J., Hang, C.C., Persson, P., Ho, W.K.: Towards intelligent PID control. Automatica 28(1), 1–9 (1992)

    Article  Google Scholar 

  4. Chang, P., Jung, P.: A systematic method for gain selection of robust PID control for nonlinear plants of secondorder controller canonical form. IEEE Trans. Control Syst. Technol. 17, 473–483 (2009)

    Article  Google Scholar 

  5. Chen, W.H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods - an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Article  Google Scholar 

  6. Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal on International Fuzzy Systems 2, 267–278 (1994)

    Article  Google Scholar 

  7. Demirli, K., Cheng, S.X., Muthukumaran, P.: Subtractive clustering based modeling of job sequencing with parametric search. Fuzzy Sets Syst. 137(2), 235–270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fazzolari, M., Alcala, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions. IEEE Trans. Fuzzy Syst. 21(1), 46–65 (2013)

    Article  Google Scholar 

  9. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  10. Fliess, M., Join, C.: Model-free control. Int. J. Control. 86(12), 2228–2252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Formentin, S., de Filippi, P., Corno, M., Tanelli, M., Savaresi, S.: Data-driven design of braking control systems. IEEE Trans. Control Syst. Technol. 21, 186–193 (2013)

    Article  Google Scholar 

  12. Ho, W. K., Hong, Y, Hansson, A, Hjalmarsson, H., Deng, J.W.: Relay auto-tuning of PID controllers using iterative feedback tuning. Automatica 39(1), 149–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jang, J.-S. R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  14. Keel, L.H., Bhattacharya, S.P.: Controller synthesis free of analytical models: three term controllers. IEEE Trans. Autom. Control 53, 1353–1369 (2008)

    Article  MathSciNet  Google Scholar 

  15. Li, W.: Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller. IEEE Trans. Fuzzy Syst. 6(4), 449–463 (1998)

    Article  Google Scholar 

  16. Lin, C.M., Li, H.Y.: Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system. IEEE Trans. Control Syst. Technol. 23(2), 693–699 (2015)

    Article  MathSciNet  Google Scholar 

  17. Mahfouf, M., Abbod, M.F., Linkens, D.A.: Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control. IEEE Trans. Syst. Man Cybern. B Cybern. 33(3), 465–475 (2003)

    Article  Google Scholar 

  18. Mamdani, E.H., Assilian, S.: Applications of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Elec. Eng. 121, 1585–1588 (1974)

    Article  MATH  Google Scholar 

  19. Mendel, J., Hagras, H., Tan, W., Melek, W., Ying, H.: Introduction to type-2 fuzzy logic control, theory and applications. Wiley-IEEE Press (2014)

  20. Milanes, V., Villagra J., Perez, J., Gonzalez C.: Low speed longitudinal controllers for mass-produced cars: a comparative study. IEEE Trans. Ind. Electron. 59, 620–628 (2012)

    Article  Google Scholar 

  21. Morales, R., Feliu, V., Sira-Ramirez, H.: Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain. IEEE Trans. Control Syst. Technol. 19, 757–77 (2011)

    Article  MATH  Google Scholar 

  22. Pedrycz, W.: Identification in fuzzy systems. IEEE Trans. Fuzzy Syst. 14, 361–366 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Precup, R.E., Hellendo, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011)

    Article  Google Scholar 

  24. Qi, Z. Mcinroy J.E., Jafari, F.: Trajectory tracking with parallel robots using low chattering fuzzy sliding mode controller. J. Intell. Robot. Syst. 48(3), 333–356 (2007)

    Article  Google Scholar 

  25. Rad, A.B., Chan, P.T., Mok, C.K.: An online learning fuzzy controller. IEEE Trans. Ind. Electron. 50(5), 1016–1021 (2003)

    Article  Google Scholar 

  26. Ren, Q., Baron, L., Balazinski, M., Jemielniak, K.: TSK Fuzzy modeling for tool wear condition in turning processes: an experimental study. Eng. Appl. Artif. Intel. 24(2), 260–265 (2011)

    Article  Google Scholar 

  27. Ren, Q., Balazinski, M., Jemielniak, K., Baron, L., Achiche, S.: Experimental and fuzzy modeling analysis on dynamic cutting force in micro-milling. Soft. Comput. 17, 1687–1697 (2013)

    Article  Google Scholar 

  28. Ren, Q., Bigras, P.: Model-free adaptive neural fuzzy feed forward torque control for nonlinear parallel mechanism. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Busan, Korea, 1043–1048 (2015)

  29. Ren, Q., Baron, L., Balazinski, M., Jemielniak, K., Botez, R., Achiche, S.: Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Inf. Sci. 255, 121–134 (2014)

    Article  Google Scholar 

  30. Sugeno, M., Kang, G.: Fuzzy modeling and control of multilayer incinerator. Fuzzy Set. Syst. 18, 329–346 (1986)

    Article  MATH  Google Scholar 

  31. Sun, Y.L., Er, M.J.: Hybrid fuzzy control of robotics systems. IEEE Trans. Fuzzy Syst. 12(6), 755–765 (2004)

    Article  Google Scholar 

  32. Syafiie, S., Tadeo, F., Martinez, E., Alvarez, T.: Model free control based on reinforcement learning for a wastewater treatment problem. Appl. Soft Comput. 1, 73–82 (2011)

    Article  Google Scholar 

  33. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  34. Tong, R.M. Gupta, M.M., Rewgade, R.K., Yager, R.R. (eds.): The construction and evaluations of fuzzy models. North-Holland, Amsterdam (1979)

  35. Villagra, J., Herrero-Perez, D.: A comparison of control techniques for robust docking maneuvers for an AVG. IEEE Trans. Control Syst. Technol. 20, 1116–1123 (2012)

    Article  Google Scholar 

  36. Wang, F.Y., Liu, D.: Networked Control Systems: Theory and Applications. Springer (2008)

  37. Yager, R.R., Filev, P.: Essentials of Fuzzy Modeling and Control. Wiley, New York (1994)

    Google Scholar 

  38. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators, p 233. IEEE Press (1996)

  39. Zi, B.Y., Duan, J., Du, L., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1), 1–12 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Bigras, P. A Highly Accurate Model-Free Motion Control System with a Mamdani Fuzzy Feedback Controller combined with a TSK Fuzzy Feed-forward Controller. J Intell Robot Syst 86, 367–379 (2017). https://doi.org/10.1007/s10846-016-0448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0448-7

Keywords

Navigation