Skip to main content
Log in

A Robotic Walker Based on a Two-Wheeled Inverted Pendulum

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the design and control of a robotic walker based on a two-wheeled inverted pendulum (TWIP) developed to assist mobility-impaired users with balance and stability. Traditional walkers use three or more contact points to create a solid base to augment a user’s balance. A TWIP walker can support a user’s balance through balance control. A robotic walker prototype has been developed to illustrate its ability to assist human gait and exploit the maneuverability of a two-wheeled mobile platform compared to multi-wheeled system. Presented is a linearized mathematical model of the two-wheeled system using Newtonian mechanics. A control strategy consisting of a decoupled linear quadratic regulator (LQR) controller and two state variable controllers is developed to stabilize the platform and regulate its behavior with robust disturbance rejection performance. Results are shown using a physical prototype to demonstrate the ability of the decoupled LQR controller to robustly balance the platform while the state variable controllers regulate the platform’s position with smooth, minimum jerk, control when used by a person during standing and walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenblatt, A.: Aging Population. CQ Res. 21(25), 577–600 (2011)

    Google Scholar 

  2. Ortman, J.M., Velkoff, V.A., Hogan, H.: An Aging Nation: The Older Population in the United States (2014)

  3. Greenblatt, A.: Aging Baby Boomers. CQ Res. 17(37), 865–888 (2007)

    Google Scholar 

  4. Da Silva, A.R., Sup, F.: Design and Control of a Two-Wheeled Robotic Walker for Balance Enhancement. IEEE Int. Conf. Rehabil. Robot., 6 (2013)

  5. Lee, G., Ohnuma, T., Chong, N.Y.: Design and Control of JAIST Active Robotic Walker. J. Intell. Serv. Robot. 3(3), 125–135 (2010)

    Article  Google Scholar 

  6. Barrué, C., Annicchiarico, R., Cortés, U., Martínez-Velasco, A., Martín, E.X., Campana, F., Caltagirone, C.: The i-Walker: An Intelligent Pedestrian Mobility Aid. Comput. Intell. Healthc. 4, 103–123 (2010)

    Google Scholar 

  7. Cifuentes, C.A., Rodriguez, C., Frizera-Neto, A., Bastos-Filho, T.F., Carelli, R.: Multimodal Human–Robot Interaction for Walker-Assisted Gait. IEEE Syst. J., 1–11 (2014)

  8. Kulyukin, V., Kutiyanawala, A., LoPresti, E., Matthews, J., Simpson, R.: iWalker: Toward a Rollator-Mounted Wayfinding System for the Elderly. 2008 IEEE Int. Conf. RFID, 303–311 (2008)

  9. Morris, A., Donamukkala, R., Kapuria, A., Steinfeld, A., Matthews, J.T., Dunbar-Jacob, J., Thrun, S.: A Robotic Walker That Provides Guidance. Proc. 2003 IEEE Int. Conf. Robot. Autom., 25–30 (2003)

  10. Rodriguez-Losada, D., Matia, F., Jimenez, A., Galan, R., Lacey, G.: Implementing Map Based Navigation in Guido, the Robotic SmartWalker. Int. Conf. Robot. Autom., 3390–3395 (2005)

  11. Lacey, G. J., Rodriguez-Losada, D.: A Smart Walker for the Blind. IEEE Robot. Autom. Mag., no. December, 75–83 (2008)

  12. Graf, B.: Reactive Navigation of an Intelligent Robotic Walking Aid. Proc. 10th IEEE Int. Work. Robot Hum. Interact. Commun. 2001, 353–358 (2001)

    Google Scholar 

  13. MacNamara, S., Lacey, G.: A Smart Walker for the Frail Visually Impaired. Proc. 2000 IEEE Int. Conf. Robot. Autom., 1354–1359 (2000)

  14. Jun, H.-G., Chang, Y.-Y., Dan, B.-J., Jo, B.-R., Min, B.-H., Yang, H., Song, W.-K., Kim, J.: Walking and sit-to-stand support system for elderly and disabled, 2011. IEEE Int. Conf. Rehabil. Robot., 1–5 (2011)

  15. Neto, A.F., Ceres, R., Rocon, E., Pons, J.L.: Empowering and Assisting Natural Human Mobility: The Simbiosis Walker. Int. J. Adv. Robot. Syst. 8(3), 34–50 (2011)

    Google Scholar 

  16. Chuy Jr, O., Hirata, Y., Wang, Z., Kosuge, K.: Approach in Assisting a Sit-to-Stand Movement Using Robotic Walking Support System. Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 4343–4348 (2006)

  17. Schneider, J., Irgenfried, S., Stork, W., Wörn, H.: A Multimodal Human Machine Interface for a Robotic Mobility Aid. Proc. 6th Int. Conf. Autom. Robot. Appl. 1, 289–294 (2015)

    Google Scholar 

  18. Hirata, Y., Komatsuda, S., Kosuge, K.: Fall Prevention Control of Passive Intelligent Walker Based on Human Model, 2008 IEEE/RSJ. Int. Conf. Int.ll. Robot. Syst., 1222–1228 (2008)

  19. Geravand, M., Peer, A.: Safety Constrained Motion Control of Mobility Assistive Robots, 2014 5th. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics 1, 1073–1078 (2014)

    Article  Google Scholar 

  20. Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J., Huang, Q.: Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention. IEEE Trans. Neural Syst. Rehabil. Eng., 1–9 (2015)

  21. Takahara, S., Jeong, S.: Prototype Design of Robotic Mobility Aid to Assist Elderly’s Standing-Sitting, Walking, and Wheelchair Driving in Daily Life, 2014 14th. Int. Conf. Control. Autom. Syst. (ICCAS) 2014, 470–473 (2014)

    Google Scholar 

  22. Choi, D., Kim, M., Oh, J.-H.: Development of a Rapid Mobile Robot with a Multi-Degree-of-Freedom Inverted Pendulum Using the Model-Based Zero-Moment Point Stabilization Method. Adv. Robot. 26 (5–6), 515–535 (2012)

    Article  Google Scholar 

  23. Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C.: JOE: A Mobile, Inverted Pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)

    Article  Google Scholar 

  24. Li, J., Gao, X., Huang, Q., Du, Q., Duan, X.: Mechanical Design and Dynamic Modeling of a Two-Wheeled Inverted Pendulum Mobile Robot, 2007. IEEE Int. Conf. Autom. Logist., 1614–1619 (2007)

  25. Lin, S., Tsai, C.-C., Huang, H.-C.: Nonlinear Adaptive Sliding-Mode Control Design for Two-Wheeled Human Transportation Vehicle. Proc. 2009 IEEE Int. Conf. Syst. Man, Cybern., 1965–1970 (2009)

  26. Jones, D.R., Stol, K.A.: Modelling and Stability Control of Two-Wheeled Robots in Low-Traction Environments. Australas. Conf. Robot. Autom., 1–9 (2010)

  27. Kalra, S., Patel, D., Stol, K.: Design and Hybrid Control of a Two Wheeled Robotic Platform. Australas. Conf. Robot. Autom., 1–7 (2007)

  28. Do, K.D., Seet, G.: Motion Control of a Two-Wheeled Mobile Vehicle with an Inverted Pendulum. J. Intell. Robot. Syst. 60(3–4), 577–605 (2010)

    Article  MATH  Google Scholar 

  29. Ahmad, S., Tokhi, M.O.: Linear Quadratic Regulator (LQR) Approach for Lifting and Stabilizing of Two-Wheeled Wheelchair, 2011 4th. Int. Conf. Mechatronics, no. May, 1–6 (2011)

  30. Huang, C., Wang, W., Chiu, C.: Design and Implementation of Fuzzy Control on a Two-Wheel Inverted Pendulum. IEEE Trans. Ind. Electron. 58(7), 2988–3001 (2011)

    Article  Google Scholar 

  31. Ren, T.-J., Chen, T.-C., Chen, C.-J.: Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Eng. Pract. 16(3), 365–375 (2008)

    Article  Google Scholar 

  32. Jeong, S.H., Takahashi, T.: Wheeled Inverted Pendulum Type Assistant Robot: Inverted Mobile, Standing, and Sitting Motions, 2007 IEEE/RSJ. Int. Conf. Int.ll. Robot. Syst., 1932–1937 (2007)

  33. Xu, C., Li, M.: The System Design and LQR control of a Two-wheels Self-balancing Mobile Robot, 2011. Int. Conf. Electr. Control Eng., 2786–2789 (2011)

  34. Goher, K.M., Tokhi, M.O.: Development, Modeling and Control of a Novel Design of Two-Wheeled Machines. Cyber Journals Multidiscip. Journals Sci. Technol. J. Sel. Areas Robot. Control, 6–16 (2010)

  35. Kahani, R., Moaveni, B.: Control of Two-Wheels Inverted Pendulum Using Parallel Distributed Compensation and Fuzzy Linear Quadratic Regulator. 2011 3rd Int. Conf. Comput. Model. Simul., 312–317 (2011)

  36. Abeygunawardhana, P.K.W., Murakami, T.: Vibration Suppression of Two-Wheel Mobile Manipulator Using Resonance-Ratio-Control-Based Null-Space Control. IEEE Trans. Ind. Electron. 57(12), 4137–4146 (2010)

    Article  Google Scholar 

  37. Goher, K.M., Tokhi, M.O.: A New Configuration of Two-Wheeled Inverted Pendulum: A Lagrangian-Based Mathematical Approach. J. Sel. Areas Robot. Control, 1–5 (2010)

  38. Li, Z., Zhu, Y., Mo, T.: Adaptive Robust Dynamic Balance and Motion Control of Mobile Wheeled Inverted Pendulums. Proc. 7th World Congr. Intell. Control Autom. 1, 933–938 (2008)

    Google Scholar 

  39. Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic Analysis of a Nonholonomic Two-Wheeled Inverted Pendulum Robot. J. Intell. Robot. Syst. 44(1), 25–46 (2005)

    Article  Google Scholar 

  40. Muhammad, M., Buyamin, S., Ahmad, M.N., Nawawi, S.W.: Dynamic Modeling and Analysis of a Two-Wheeled Inverted Pendulum Robot. 2011 Third Int. Conf. Comput. Int.ll. Model. Simul., 159–164 (2011)

  41. Nawawi, S.W., Ahmad, M.N., Osman, J.H.S.: Development of a Two-Wheeled Inverted Pendulum Mobile Robot. 5th Student Conf. Res. Dev., 1–5 (2007)

  42. Lee, S.J., Bae, Y.G., Jung, S.: Object Handling Control between a Balancing Robot and a Human Operator, 2012. IEEE Int. Symp. Ind. Electron., 931–936 (2012)

  43. Lee, S.J., Jung, S.: Experimental Studies of an Object Handling Task by Force Control between Two Balancing Robots. 11th Int. Conf. Control. Autom. Syst., 197–201 (2011)

  44. Ruan, X., Chen, J.: H8 Robust Control of Self-Balancing Two-Wheeled Robot. Proc. 8th World Congr. Intell. Control Autom., 6524–6527 (2010)

  45. Hatakeyama, N., Shimada, A.: Movement Control using Zero Dynamics of Two-Wheeled Inverted Pendulum Robot. 2008 10th IEEE Int. Work. Adv. Motion Control, 38–43 (2008)

  46. Shimada, A., Hatakeyama, N.: Movement control of two-wheeled inverted pendulum robots considering robustness. SICE Annu. Conf. 2008, 3361–3366 (2008)

    Google Scholar 

  47. Rai, R.K., Singh, A.K.: Design and Simulation of Different Controllers for Stabilizing Inverted Pendulum System. Int. J. Eng. Res. Appl. 4(7), 236–242 (2014)

    Google Scholar 

  48. Razmjooy, N., Madadi, A., Alikhani, H.-R., Mohseni, M.: Comparison of LQR and Pole Placement Design Controllers for Controlling the Inverted Pendulum. J. World’s Electr. Eng. Technol. 3 (2), 83–88 (2014)

    Google Scholar 

  49. Nasir, A.N.K., Ahmad, M.A., Ismail, R.M.T.R.: The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes. World Acad. Sci. Eng. Technol. 4(10), 176–181 (2010)

    Google Scholar 

  50. Junfeng, W., Wanying, Z.: Research on Control Method of Two-wheeled Self-balancing Robot, 2011 Fourth. Int. Conf. Int.ll. Comput. Technol. Autom., 476–479 (2011)

  51. Krishna, B., Chandran, D., George, V.I., Thirunavukkarasu, I.: Modeling and Performance Comparison of Triple PID and LQR Controllers for Parallel Rotary Double Inverted Pendulum. Int. J. Emerg. Trends Electr. Electron. 11(2), 145–150 (2015)

    Google Scholar 

  52. Hamza, M., Zaka-ur-Rehman, Zahid, Q., Tahir, F., Khalid, Z.: Real-Time Control of an Inverted Pendulum: A Comparative Study, 2011 Front. Inf. Technol., 183– 188 (2011)

  53. Levine, W.S.: The Control Handbook: Control System Advanced Methods (2010)

  54. Hogan, N.: An Organizing Principle for a Class of Voluntary Movements. J. Neurosci. 4(11), 2745–2754 (1984)

    Google Scholar 

  55. Kuindersma, S.R., Hannigan, E., Ruiken, D., Grupen, R.A.: Dexterous Mobility with the uBot-5 Mobile Manipulator, Proc. 14th Int. Conf. Adv. Robot. (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank C. Sup IV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.R., Sup, F.C. A Robotic Walker Based on a Two-Wheeled Inverted Pendulum. J Intell Robot Syst 86, 17–34 (2017). https://doi.org/10.1007/s10846-016-0447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0447-8

Keywords

Navigation