Skip to main content
Log in

Experimental Analysis of Variable Collective-pitch Rotor Systems for Multirotor Helicopter Applications

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an experimental study of variable collective-pitch rotor systems for multirotor helicopter applications. An experimental research facility has been established to conduct this research. The facility enables the high-resolution measurement of forces and torques produced by rotor systems. The power consumption of the rotor system during experimentation can also be recorded. The experimental research facility also allows for the characterisation of the effect of rotor systems on multirotor helicopter performance. It is shown that the variable collective-pitch rotors have a significant performance advantage over fixed-pitch rotors when comparing thrust response, and multirotor helicopter step input response performance. Further, it is observed that variable collective-pitch rotors are more efficient in terms of energy consumption than comparable fixed-pitch rotors under similar operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of reinforcement learning to aerobatic helicopter flight. Adv. Neural Inf. Process. Syst. 19, 1 (2007)

    Google Scholar 

  2. Alaimo, A., Artale, V., Milazzo, C.L.R., Ricciardello, A.: PID controller applied to hexacopter flight. J. Intell. Robot. Syst. 73(1-4), 261–270 (2014)

    Article  Google Scholar 

  3. Astrom, K.J., Hagglund, T.: PID controllers: theory, design, and tuning, 2 edn. Instrument Society of America. Research Triangle Park, NC (1995)

    Google Scholar 

  4. Borenstein, J.: The hoverbot - an electrically powered flying robot (1992)

  5. Boṡnak, M., Matko, D., BlaŻiċ, S.: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system. J. Intell. Robot. Syst. 67(1), 43–60 (2012)

    Article  Google Scholar 

  6. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, vol. 3, pp 2451–2456 (2004)

  7. Bresciani, T.: Modelling, identification and control of a quadrotor helicopter. Unpublished masters thesis, lund university, lund, sweden (2008)

    Google Scholar 

  8. Choi, M.H., Porter, R., Shirinzadeh, B.: Comparison of attitude determination methodologies for implementation with 9DOF, low cost inertial measurement unit for autonomous aerial vehicles. Int. J. Intell. Mechatron. Robot. 3(2), 1–15 (2013)

    Article  Google Scholar 

  9. Clark, L., Shirinzadeh, B., Tian, Y., Oetomo, D.: Laser-based sensing, measurement, and misalignment control of coupled linear and angular motion for ultrahigh precision movement. IEEE/ASME Trans. Mechatron. 20(1), 84–92 (2015)

    Article  Google Scholar 

  10. Cook, M.V.: Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control, 2nd. Elsevier Aerospace Engineering Series. Butterworth-Heinemann, Great Britain (2007)

    Google Scholar 

  11. Cutler, M., Ure, N.K., Michini, B., How, J.P.: Comparison of fixed and variable pitch actuators for agile quadrotors. In: AIAA Guidance, Navigation, and Control Conference (2010)

  12. Gavrilets, V., Frazzoli, E., Mettler, B., Piedmonte, M., Feron, E.: Aggressive maneuvering of small autonomous helicopters: A human-centered approach. Int. J. Robot. Res. 20(10), 795–807 (2001)

    Article  Google Scholar 

  13. Hooper, R.: 3D-printing drone squirts foam to pick up waste. New Sci. 222(2968), 21 (2014)

    Article  Google Scholar 

  14. Kuethe, A., Chow, C.Y.: Foundations of Aerodynamics, 5th edn. Wiley, New York (1998)

    Google Scholar 

  15. Lee, D.J., Kaminer, I., Dobrokhodov, V., Jones, K.: Autonomous feature following for visual surveillance using a small unmanned aerial vehicle with gimbaled camera system. Int. J. Control Autom. Syst. 8(5), 957–966 (2010)

    Article  Google Scholar 

  16. Leishman, J.G.: Principles of helicopter aerodynamics. Cambridge Aerospace Series, Cambridge University Press, New York (2006)

    Google Scholar 

  17. Madgwick, S.O., Harrison, A.J., Vaidyanathan, R.: Estimation of imu and marg orientation using a gradient descent algorithm. In: IEEE International Conference on Rehabilitation Robotics, 2011, pp 1–7. IEEE (2011)

  18. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  19. McCormack, A.S., Godfrey, K.R.: Rule-based autotuning based on frequency domain identification. IEEE Trans. Control Syst. Technol. 6(1), 43–61 (1998)

    Article  Google Scholar 

  20. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  21. Orsag, M., Cesic, J., Haus, T., Bogdan, S.: Spincopter wing design and flight control. J. Intell. Robot. Syst. 70(1-4), 165–179 (2013)

  22. Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu, C., Mondragón, I.F., Campoy, P.: A general purpose configurable controller for indoors and outdoors gps-denied navigation for multirotor unmanned aerial vehicles. J. Intell. Robot. Syst. 73(1-4), 387–400 (2014)

  23. Pounds, P., Mahony, R.: Design principles of large quadrotors for practical applications. In: IEEE International Conference on Robotics and Automation, 2009, pp 3265–3270

  24. Tan, R., Kumar, M.: Tracking of ground mobile targets by quadrotor unmanned aerial vehicles. Unmanned Syst. 02(02), 157–173 (2014)

    Article  Google Scholar 

  25. Tayebi, A., McGilvray, S.: Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  26. Wang, X., Shirinzadeh, B.: High-order nonlinear differentiator and application to aircraft control. Mech. Syst. Signal Process. 46(2), 227–252 (2014)

    Article  Google Scholar 

  27. Wang, X., Shirinzadeh, B.: Nonlinear multiple integrator and application to aircraft navigation. IEEE Trans. Aerosp. Electron. Syst. 50(1), 607–622 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Porter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, R., Shirinzadeh, B. & Choi, M.H. Experimental Analysis of Variable Collective-pitch Rotor Systems for Multirotor Helicopter Applications. J Intell Robot Syst 83, 271–288 (2016). https://doi.org/10.1007/s10846-015-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0311-2

Keywords

Navigation