Skip to main content
Log in

Model-Free Control of a Hovering Flapping-Wing Microrobot

The Design Process of a Stabilizing Multiple-Input–Multiple-Output Controller

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We present a model-free experimental method to find a control strategy for achieving stable flight of a dual-actuator biologically inspired flapping-wing flying microrobot during hovering. The main idea proposed in this work is the sequential tuning of parameters for an increasingly more complex strategy in order to sequentially accomplish more complex tasks: upright stable flight, straight vertical flight, and stable hovering with altitude and position control. Each term of the resulting multiple-input–multiple-output (MIMO) controller has a physical intuitive meaning and the control structure is relatively simple such that it could potentially be applied to other kinds of flapping-wing robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finio, B.M.: Roll, Pitch and Yaw Torque Control for a Robotic Bee. Ph.D, Dissertation, Harvard University, Cambridge, MA (2012)

  2. Vigoreaux, J.O.: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Landes Bioscience & Springer, Georgetown, TX and New York, NY (2006)

  3. Pérez-Arancibia, N.O., Chirarattananon, P., Finio, B.M., Wood, R.J.: Pitch-angle feedback control of a biologically inspired flapping-wing microrobot. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, pp. 1495–1502. Phuket Island, Thailand (2011)

  4. Pérez-Arancibia, N.O., Ma, K.Y., Galloway, K.C., Greenberg, J.D., Wood, R.J.: First controlled vertical flight of a biologically inspired microrobot. Bioinspir. Biomim. 6(3), 036009–1–11 (2011)

    Article  Google Scholar 

  5. Finio, B.M., Pérez-Arancibia, N.O., Wood, R.J.: System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1107–1114. San Francisco, CA (2011)

  6. Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O: Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. J. Guid. Control. Dyn. 33(3), 724–739 (2010)

    Article  Google Scholar 

  7. Ma, K.Y., Felton, S.M., Wood, R.J.: Design, fabrication, and modeling of the split actuator microrobotic bee. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1133–1140. Vilamoura, Algarve, Portugal (2012)

  8. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  9. Ellington, C.P.: The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Phil. Trans. R. Soc. Lond. B 305(1122), 1–15 (1984)

    Article  Google Scholar 

  10. Alexander, D.E.: Nature’s Flyers. The Johns Hopkins University Press, Baltimore, MD (2002)

  11. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot 24(2), 341–347 (2008)

    Article  Google Scholar 

  12. G. R. Spedding: The aerodynamics of flight. In: Alexander, R. McN. (eds.) Mechanics of Animal Locomotion, pp. 51–111. Springer-Verlag, Berlin & Heidelberg, Germany (1992)

  13. Ellington, C.P.: The aerodynamics of hovering insect flight. II. morphological parameters. Phil. Trans. R. Soc. Lond. B 305(1122), 17–40 (1984)

    Article  Google Scholar 

  14. Ellington, C.P.: The aerodynamics of hovering insect flight. VI. lift and power requirements. Phil. Trans. R. Soc. Lond. B 305(1122), 145–185 (1984)

    Article  Google Scholar 

  15. Spedding, G.R., Lissaman, P.B.S.: Technical aspects of microscale flight systems. J. Avian Biol. 29(4), 458–468 (1998)

    Article  Google Scholar 

  16. Pesavento, U., Wang, Z.J.: Flapping wing flight can save aerodynamic power compared to steady flight. Phys. Rev. Lett. 103(11), 118102 (2009)

    Article  Google Scholar 

  17. Wood, R.J., Steltz, E., Fearing, R.S.: Nonlinear performance limits for high energy density piezoelectric bending actuators. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3633–3640. Barcelona, Spain (2005)

  18. Pérez-Arancibia, N.O.,Whitney, J.P.,Wood, R.J.: Lift force control of a flapping-wing microrobot. In: Proceedings of the 2011 American Control Conference, pp. 4761–4768. San Francisco, CA (2011)

  19. Pérez-Arancibia, N.O., Whitney, J.P., Wood, R.J.: Lift force control of flapping-wing microrobots using adaptive feedforward schemes. IEEE/ASME Trans. Mechatron 18(1), 155–168 (2013)

    Article  Google Scholar 

  20. Whitney, J.P., Wood, R.J.: Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197–220 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Whitney, J.P.: Design and Performance of Insect-Scale Flapping-Wing Vehicles. Ph.D. Dissertation, Harvard University, Cambridge, MA (2012)

  22. Lehmann, F.-O., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (Drosophila spp.) J. Exp. Biol. 201(3), 385–401 (1998)

    Google Scholar 

  23. Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59(1), 169–230 (1973)

    Google Scholar 

  24. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia, PA (2004)

  25. Pérez-Arancibia, N.O., Duhamel, P.-E. J., Ma, K.Y., Wood, R.J.: Model-Free Control of a Hovering Flapping-Wing Flying Microrobot. [Online]. Available: http://micro.seas.harvard.edu/JINT2014/S1.mp4 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor O. Pérez-Arancibia.

Additional information

N. O. Pérez-Arancibia and P.-E. J. Duhamel contributed equally to this work.

This work was supported in part by the National Science Foundation (award number CCF-0926148) and the Wyss Institute for Biologically Inspired Engineering. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 36.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Arancibia, N.O., Duhamel, PE.J., Ma, K.Y. et al. Model-Free Control of a Hovering Flapping-Wing Microrobot. J Intell Robot Syst 77, 95–111 (2015). https://doi.org/10.1007/s10846-014-0096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0096-8

Keywords

Navigation