Skip to main content
Log in

Navigation’s Stabilization System of a Magnetic Adherence-Based Climbing Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a climbing robot based on wheel locomotion and magnetic adherence. The proposed mechanical design stands on four unaligned magnetic wheels disposed in two parallel axes, which provides a great advantage when passing over obstacles. The goal of the robot is to perform internal/external inspection in liquefied petroleum gas (LPG) storage tanks and other industrial storage structures. Thus, there are a few of severe operation features (like adherence and force balance) that impose hard conditions to robot’s navigation. To satisfy these conditions, a dynamic control system was developed in two modules: active gravitational compensation system and adherence stabilization system. Simulated and experimental tests were carried out in order to verify the satisfaction of mechanical constraints and to validate the control system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tzvi, P., Ito, S., Goldenberg, A.: A mobile robot with autonomous climbing and descending of stairs. Robotica, Cambridge University Press 27, 171–188 (2009)

    Google Scholar 

  2. Caprari, G., Breitenmoser, A., Fischer, W., Hürzeler, C., Tâche, F., Siegwart, R., Nguyen, O., Moser, R., Schoeneich, P., Mondada, F.: Highly compact robots for inspection of power plants. J. Field Robot. 29, 47–68 (2012)

    Article  Google Scholar 

  3. Chu, B., Jung, K., Han, C.: A survey of climbing robots: locomotion and adhesion. Int. J. Precis. Eng. Manuf. 11, 633–647 (2010)

    Article  Google Scholar 

  4. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robot. Syst. 14(3), 149–163 (1997)

    Article  MATH  Google Scholar 

  5. Fischer, W., Caprari, G., Siegwart, R., Moser, R.: Locomotion system for a mobile robot on magnetic wheels with both axial and circumferential mobility and with only an 8-mm height for generator inspection with the rotor still installed. IEEE Trans. Ind. Electron. 58, 5296–5303 (2011)

    Article  Google Scholar 

  6. Guan, Y., Jiang, L., Zhu, H., Zhou, X., Cai, C., Wu, W., Li, Z., Zhang, H., Zhang, X.: Climbot: A modular bio-inspired biped climbing robot. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1473–1478 (2011)

  7. Jiang, Z., Li, J., Gao, X., Fan, N., Wei, B.: Study on pneumatic wall climbing robot adhesion principle and suction control. In: IEEE International Conference on Robotics and Biomimetics, 2008. ROBIO 2008, pp. 1812–1817 (2009)

  8. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V., Cutkosky, M.R.: Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. In: IEEE International Conference on Robotics and Automation, pp. 1268–1273 (2007)

  9. Koo, I., Trong, T., Lee, Y., Moon, H., Koo, J., Park, S., Choi, H.: Development of wall climbing robot system by using impeller type adhesion mechanism. J. Intell. Robot. Syst. 72(1), 57–72 (2013)

    Article  Google Scholar 

  10. Okamoto Jun, J., Grassi Valdir, J., Amaral, P., Pinto, B., Pipa, D., Pires, G., Martins, M.: Development of an autonomous robot for gas storage spheres inspection. J. Intell. Robot. Syst. 66(1–2), 23–35 (2012)

    Article  Google Scholar 

  11. Oliveira, A., Silva, M., Barbosa, R.: Architecture of an wheeled climbing robot with dynamic adjustment of the adhesion system. In: IEE International Symposium on Intelligent Systems and Informatics (SISY), pp. 127–132 (2010)

  12. de Oliveira, A.S, de Arruda, L.V.R., Junior, F.N., Espinoza, R.V., ao Pedro Battistella Nadas, J.: Adhesion force control and active gravitational compensation for autonomous inspection in lpg storage spheres. In: Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), pp. 232–238 (2012)

  13. Olsson, H., Aström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control. 4, 176–195 (1998)

    Article  MATH  Google Scholar 

  14. Osswald, M., Iida, F.: A climbing robot based on hot melt adhesion. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5107–5112 (2011)

  15. Rovani, A.: Development of a robot to inspect weld cord at metallic surface. Technical Report (in portuguese) - Mechanical Engineering - Federal University of Technology - Paraná (UTFPR), Curitiba, pp. 117 (2013)

  16. Schmidt, D., Hillenbrand, C., Berns, K.: Omnidirectional locomotion and traction control of the wheel-driven, wall-climbing robot cromsci. Robotica, Cambridge Univ Press 29, 991–1003 (2011)

    Google Scholar 

  17. Silva, M., Machado, J., Tar, J.: A survey of technologies for climbing robots adhesion to surfaces. In: IEEE International Conference on Computational Cybernetics, 2008. ICCC 2008, pp. 127–132 (2008)

  18. Wu, M., Gao, X., Yan, W., Fu, Z., Zhao, Y., Chen, S.: New mechanism to pass obstacles for magnetic climbing robots with high payload, using only one motor for force-changing and wheel-lifting. Ind. Robot. Int. J. 38, 372–380 (2011)

    Article  Google Scholar 

  19. Wu, M., Gao, X., Yan, W., Fu, Z., Zhao, Y., Chen, S.: New mechanism to pass obstacles for magnetic climbing robots with high payload, using only one motor for force-changing and wheel-lifting. Ind. Robot. Int. J. 38, 372–380 (2011)

    Article  Google Scholar 

  20. Xu, Z., Ma, P.: A wall-climbing robot for labelling scale of oil tank’s volume. Robotica, Cambridge Univ Press 20, 209–212 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Valério Espinoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza, R.V., de Oliveira, A.S., de Arruda, L.V.R. et al. Navigation’s Stabilization System of a Magnetic Adherence-Based Climbing Robot. J Intell Robot Syst 78, 65–81 (2015). https://doi.org/10.1007/s10846-014-0076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0076-z

Keywords

Navigation