Skip to main content
Log in

Probabilistic Egomotion for Stereo Visual Odometry

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alismail, H., Browning, B., Dias, M.B.: Evaluating pose estimation methods for stereo visual odometry on robots. In: Proceedings of the 11th International Conference on Intelligent Autonomous Systems (IAS-11) (2010)

  2. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53, 263–296 (2008)

    Article  Google Scholar 

  3. Comport, A., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. Int. J. Robot. Res. 29(2–3), 245–266 (2010)

    Article  Google Scholar 

  4. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

  5. Domke, J., Aloimonos, Y.: A probabilistic notion of correspondence and the epipolar constraint. In: 3rd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pp. 41–48. IEEE (2006)

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B Methodol. 53(2), 285–339 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

  9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press. ISBN: 0521540518 (2004)

  10. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3946–3952. IEEE (2008)

  11. Huang, J., Zhu, T., Pan, X., Qin, L., Peng, X., Xiong, C., Fang, J.: A high-efficiency digital image correlation method based on a fast recursive scheme. Meas. Sci. Technol. 21(3) (2011)

  12. Kai, N., Dellaert, F.: Stereo tracking and three-point/one-point algorithms - a robust approach. In: Visual Odometry, International Conference on Image Processing (ICIP), pp. 2777–2780 (2006)

  13. Kazik, T., Kneip, L., Nikolic, J., Pollefeys, M., Siegwart, R.: Real-time 6d stereo visual odometry with non-overlapping fields of view. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1536 (2012)

  14. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In: IEEE Intelligent Vehicles Symposium (IV), pp. 486–492. IEEE (2010)

  15. Kneip, L., Chli, M., Siegwart, R.: Robust real-time visual odometry with a single camera and an imu. In: Proceedings of the British Machine Vision Conference (BMVC) (2011)

  16. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. pp. 674–679 (1981)

  18. Maimone, M., Matthies, L., Cheng, Y.: Visual odometry on the Mars exploration rovers. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 903–910. IEEE (2005)

  19. Maimone, M., Matthies, L., Cheng, Y.: Two years of visual odometry on the mars exploration rovers: Field reports. J. Field Robot. 24(3) (2007)

  20. Milella, A., Siegwart, R.: Stereo-based ego-motion estimation using pixel tracking and iterative closest point. In: IEEE International Conference on Computer Vision Systems, pp. 21 (2006)

  21. Moreno, F., Blanco, J., González, J.: An efficient closed-form solution to probabilistic 6D visual odometry for a stereo camera. In: Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 932–942. Springer-Verlag (2007)

  22. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). doi:10.1093/comjnl/7.4.308

    Article  MATH  Google Scholar 

  23. Ni, K., Dellaert, F., Kaess, M.: Flow separation for fast and robust stereo odometry. In: IEEE International Conference on Robotics and Automation, ICRA 2009, vol. 1, pp. 3539–3544 (2009)

  24. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–777 (2004)

    Article  Google Scholar 

  25. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. Field Robot. 23(1), 3–20 (2006)

    Article  MATH  Google Scholar 

  26. Obdrzalek, S., Matas, J.: A voting strategy for visual ego-motion from stereo. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 382–387

  27. Olson, C., Matthies, L., Schoppers, M.: Maimone, M.: Rover navigation using stereo ego-motion. Robot. Auton. Syst. 43, 215–229 (2003)

    Article  Google Scholar 

  28. Rehder, J., Gupta, K., Nuske, S.T., Singh, S.: Global pose estimation with limited gps and long range visual odometry. In: IEEE Conference on Robotics and Automation (2012)

  29. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3rd International Conference on 3D Digital Imaging and Modeling (3DIM) (2001)

  30. Scaramuzza, D., Fraundorfer, F.: Visual odometry tutorial, part i. Robot. Autom. Mag. IEEE 18(4), 80–92 (2011)

    Article  Google Scholar 

  31. Silva, H., Bernardino, A., Silva, E.: Combining sparse and dense methods for 6d visual odometry. In: 13th IEEE International Conference on Autonomous Robot Systems and Competitions. Lisbon (2013)

  32. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. Spec. Vol. Comp. Vis. 78(2), 87–119 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, H., Bernardino, A. & Silva, E. Probabilistic Egomotion for Stereo Visual Odometry. J Intell Robot Syst 77, 265–280 (2015). https://doi.org/10.1007/s10846-014-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0054-5

Keywords

Navigation