Skip to main content
Log in

Stabilization and Trajectory Tracking of a Quad-Rotor Using Vision

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We propose a vision-based position control method, with the purpose of providing some level of autonomy to a quad-rotor unmanned aerial vehicle. Our approach estimates the helicopter X-Y-Z position with respect to a landing pad on the ground. This technique allows us to measure the position variables that are difficult to compute when using conventional navigation systems, for example inertial sensors or Global Positioning Systems in urban environment or indoor. We also present a method to measure translational speed in a local frame. The control strategy implemented is based on a full state feedback controller. Experimental results validate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reinhardt, J.R., James, J.E., Flannagan, E.M.: Future employment of UAVS: issues of jointness. Joint Force Q. 22, 36–41 (1999)

    Google Scholar 

  2. Salazar, S., Escareno, J., Lara, D., Lozano, R.: Embedded control system for a four rotor UAV. Int. J. Adapt. Control Signal Process. 21(2–3), 189–204 (2007)

    Article  MATH  Google Scholar 

  3. Kendoul, F., Lara, D., Fantoni-Coichot, I., Lozano, R.: Real-time nonlinear embedded control for an autonomous quadrotor helicopter. AIAA J. Guid. Control Dyn. 30(4), 1049–1061 (2007)

    Article  Google Scholar 

  4. Saripalli, S., Montgomery, J., Sukhatme, G.: Vision-based autonomous landing of an unmanned aerial vehicle. In: IEEE International Conference on Robotics and Automation, pp. 2799–2804 (2002)

  5. Romero, H., Benosman, R., Lozano, R.: Stabilization and location of a four rotor helicopter applying vision. In: American Control Conference, pp. 3930–3936. Minneapolis, USA (2006)

  6. Salazar, S., Romero, H., Lozano, R., Castillo, P.: Modeling and real-time stabilization of an aircraft having eight rotors. J. Intell. Robot. Syst. 54(1–3), 455–470 (2009)

    Article  Google Scholar 

  7. Saripalli, S., Montgomery, J., Sukhatme, G.: Visually-guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–381 (2003)

    Article  Google Scholar 

  8. Yang, Z.F., Tsai, W.H.: Using parallel line information for vision-based landmark location estimation and an application to automatic helicopter landing. Robot. Comput.-Integr. Manuf. 14(4), 297–306 (1998)

    Article  MATH  Google Scholar 

  9. Romero, H., Salazar, S., Lozano, R.: Real-time stabilization of an eight-rotor UAV using optical flow. IEEE Trans. Robot. 25(4), 809–817 (2009)

    Article  Google Scholar 

  10. Altug, E., Ostrowski, J., Taylor, C.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Rob. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  11. Rondon, E., Salazar, S., Escareno, J., Lozano, R.: Vision-based position control of a two-rotor VTOL miniUAV. J. Intell. Robot. Syst. 57(1–4), 49–64 (2010)

    Article  Google Scholar 

  12. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Autonomous navigation and exploration of a quadrotor helicopter in GPS-denied indoor environments. In: Robotics: Science and Systems Conference (2008)

  13. Demonceaux, C., Vasseur, P., Pégard, C.: Omnidirectional vision on UAV for attitude computation. In: IEEE International Conference on Robotics and Automation (2006)

  14. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  15. Bradski, G., Kaehler, A.: Learning OpenCV, Computer Vision with the OpenCV Library. O’Reilly Media (2008)

  16. Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the perspective 4-point problem. Comput. Vis. Graph. Image Process. 47, 33–44 (1989)

    Article  Google Scholar 

  17. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  18. Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker—Description of the Algorithm. Intel Corporation—Microprocessor Research Labs (2002)

  19. Open Computer Vision Lib. http://sourceforge.net/projects/opencvlibrary/. Accessed September 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. García Carrillo.

Additional information

This work was partially supported by Mexico’s National Council of Science and Technology (CONACYT) and the Research Center for Advanced Studies—Cinvestav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Carrillo, L.R., Rondon, E., Sanchez, A. et al. Stabilization and Trajectory Tracking of a Quad-Rotor Using Vision. J Intell Robot Syst 61, 103–118 (2011). https://doi.org/10.1007/s10846-010-9472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9472-1

Keywords

Navigation