Skip to main content
Log in

Eco-modular product architecture identification and assessment for product recovery

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In order to improve the efficiency of disassembly and product recovery of an abandoned product at the end-of-life stage, it is essential to develop modular product architecture by considering manufacturing and recovering processes in early product design stage. In this paper, a novel concept of a design methodology is introduced to develop eco-modular product architecture and assess the modularity of the architecture from the viewpoint of product recovery. Eco-modular product architecture contributes to enhancing product recovery processes by recycling and reusing modules without full disassembly at component or material levels. It leads to less consumption of natural resources and less landfill damage to the environment. Three sustainable modular drivers, namely, interface complexity, material similarity, and lifespan similarity, are introduced to reconstruct the modular architecture of commercial products into the eco-modular architecture. Alternatives of modular architectures are identified by Markov Cluster Algorithm based on these sustainable modular drivers and physical interconnections of the components of product architecture. To select the eco-modular architecture from these alternatives, we propose modularity assessment metrics to identify independent interactions between modules and the degrees of similarity within each module. To demonstrate the effectiveness of the proposed methodology, a case study is performed with a coffee maker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asikoglu, O., & Simpson, T. W. (2012). A new method for evaluating design dependencies in product architectures. Paper presented at the 12th AIAA aviation technology, integration, and operations (ATIO) conference and 14th AIAA/ISSMO multidisciplinary analysis and optimization conference Indianapolis, Indiana, USA, Sept 17-19, 2012.

  • Baayen, H. (2000). Eco-indicator 99 manual for designers. Ministry of Housing, Spatial Planning and the Environment, Hague, Netherlands. Accessed Dec 1, 2015, from https://www.pre-sustainability.com/download/EI99_Manual.pdf.

  • Behdad, S., Berg, L. P., Thurston, D., & Vance, J. (2014). Leveraging virtual reality experiences with mixed-integer nonlinear programming visualization of disassembly sequence planning under uncertainty. Journal of Mechanical Design, 136(4), 041005. doi:10.1115/1.4026463.

    Article  Google Scholar 

  • Behdad, S., Kwak, M., Kim, H., & Thurston, D. (2010). Simultaneous selective disassembly and end-of-life decision making for multiple products that share disassembly operations. Journal of Mechanical Design, 132(4), 041002–041002. doi:10.1115/1.4001207.

    Article  Google Scholar 

  • Bernardes, J. S., Vieira, F. R., Costa, L. M., & Zaverucha, G. (2015). Evaluation and improvements of clustering algorithms for detecting remote homologous protein families. BMC Bioinformatics, 16(1), 1–14. doi:10.1186/s12859-014-0445-4.

    Article  Google Scholar 

  • Borjesson, F., & Hölttä-Otto, K. (2014). A module generation algorithm for product architecture based on component interactions and strategic drivers. Research in Engineering Design, 25(1), 31–51. doi:10.1007/s00163-013-0164-2.

    Article  Google Scholar 

  • Chiriac, N., Hölttä-Otto, K., Lysy, D., & Suh, E. S. (2011). Level of modularity and different levels of system granularity. Journal of Mechanical Design, 133(10), 101007.

    Article  Google Scholar 

  • Chun-Che, H., & Kusiak, A. (1998). Modularity in design of products and systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 28(1), 66–77. doi:10.1109/3468.650323.

    Article  Google Scholar 

  • Dahmus, J. B., Gonzalez-Zugasti, J. P., & Otto, K. N. (2001). Modular product architecture. Design Studies, 22(5), 409–424. doi:10.1016/S0142-694X(01)00004-7.

    Article  Google Scholar 

  • Dobberfuhl, A., & Lange, M. W. (2009). Interfaces per module: Is there an ideal number? Paper presented at the ASME 2009 international design engineering technical conferences and computers and information in engineering conference, San Diego, California, USA, Aug 30–Sept 2, 2009.

  • Du, G., Jiao, R. J., & Chen, M. (2014). Joint optimization of product family configuration and scaling design by Stackelberg game. European Journal of Operational Research, 232(2), 330–341. doi:10.1016/j.ejor.2013.07.021.

    Article  Google Scholar 

  • Erixon, G. (1996). Modular function development MFD, support for good product structure creation. Paper presented at the DS 53: Proceedings of the 2nd WDK workshop on product structuring, Delft University of Technology, Netherlands, June 03–04

  • Erixon, G. (1998). Modular function deployment—a method for product modularisation. PhD thesis, The Royal Institute of Technology, Sweden.

  • Fixson, S. K. (2005). Product architecture assessment: A tool to link product, process, and supply chain design decisions. Journal of Operations Management, 23(3–4), 345–369. doi:10.1016/j.jom.2004.08.006.

    Article  Google Scholar 

  • Fujita, K., & Yoshida, H. (2004). Product variety optimization simultaneously designing module combination and module attributes. Concurrent Engineering, 12(2), 105–118. doi:10.1177/1063293x04044758.

    Article  Google Scholar 

  • GÜngÖr, A., & Gupta, S. M. (2001). Disassembly sequence plan generation using a branch-and-bound algorithm. International Journal of Production Research, 39(3), 481–509. doi:10.1080/00207540010002838.

    Article  Google Scholar 

  • Helmer, R., Yassine, A., & Meier, C. (2010). Systematic module and interface definition using component design structure matrix. Journal of Engineering Design, 21(6), 647–675. doi:10.1080/09544820802563226.

    Article  Google Scholar 

  • Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., & Wood, K. L. (2002). A functional basis for engineering design: Reconciling and evolving previous efforts. Research in Engineering Design, 13(2), 65–82. doi:10.1007/s00163-001-0008-3.

    Article  Google Scholar 

  • Hölttä, K. M. M., & Otto, K. N. (2005). Incorporating design effort complexity measures in product architectural design and assessment. Design Studies, 26(5), 463–485. doi:10.1016/j.destud.2004.10.001.

    Article  Google Scholar 

  • Ilgin, M. A., & Gupta, S. M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management, 91(3), 563–591. doi:10.1016/j.jenvman.2009.09.037.

    Article  Google Scholar 

  • Ishii, K., Eubanks, C. F., & Di Marco, P. (1994). Design for product retirement and material life-cycle. Materials & Design, 15(4), 225–233. doi:10.1016/0261-3069(94)90007-8.

    Article  Google Scholar 

  • Jose, A., & Tollenaere, M. (2005). Modular and platform methods for product family design: Literature analysis. Journal of Intelligent Manufacturing, 16(3), 371–390. doi:10.1007/s10845-005-7030-7.

    Article  Google Scholar 

  • Jung, S., & Simpson, T. W. (2014). A clustering method using new modularity indices and genetic algorithm with extended chromosomes. Paper presented at the DSM 14 proceedings of the 16th international DSM conference: Risk and change management in complex systems, Paris, France, July 2–4, 2014.

  • Jung, S., Simpson, T. W., & Asikoglu, O. (2014). Using interfaces to drive module definition: Investigating the impact of a new design dependency measure. Paper presented at the ASME 2014 international design engineering technical conferences and computers and information in engineering conference (DETC2014-34555), Buffalo, New York, USA, Aug 17–20, 2014.

  • Kara, S., Mazhar, M., Kaebernick, H., & Ahmed, A. (2005). Determining the reuse potential of components based on life cycle data. CIRP Annals—Manufacturing Technology, 54(1), 1–4. doi:10.1016/S0007-8506(07)60036-5.

    Article  Google Scholar 

  • Kim, S., Baek, J. W., Moon, S. K., & Jeon, S. M. (2015). A new approach for product design by integrating assembly and disassembly sequence structure planning. In Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems (Vol. 1, pp. 247–257). Springer International Publishing, Switzerland.

  • Krause, D., Beckmann, G., Eilmus, S., Gebhardt, N., Jonas, H., & Rettberg, R. (2014). Advances in product family and product platform design. In T. W. Simpson, J. Jiao, Z. Siddique, & K. Hölttä-Otto (Eds.), Integrated development of modular product families: A methods toolkit (pp. 245–269). New York: Springer.

    Google Scholar 

  • Kwak, M. J., Hong, Y. S., & Cho, N. W. (2009). Eco-architecture analysis for end-of-life decision making. International Journal of Production Research, 47(22), 6233–6259. doi:10.1080/00207540802175329.

    Article  Google Scholar 

  • Lambert, A. J. D. (2002). Determining optimum disassembly sequences in electronic equipment. Computers & Industrial Engineering, 43(3), 553–575. doi:10.1016/S0360-8352(02)00125-0.

    Article  Google Scholar 

  • Lei, X., Wang, F., Wu, F.-X., Zhang, A., & Pedrycz, W. (2016). Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Information Sciences, 329, 303–316. doi:10.1016/j.ins.2015.09.028.

    Article  Google Scholar 

  • Lindahl, M., Sundin, E., Östlin, J., & Björkman, M. (2006). Concepts and definitions for product recovery analysis and clarification of the terminology used in academia and industry. In D. Brissaud, S. Tichkewitch, & P. Zwolinski (Eds.), Innovation in life cycle engineering and sustainable development (pp. 123–138). Netherlands: Springer.

  • Ljungberg, L. Y. (2007). Materials selection and design for development of sustainable products. Materials & Design, 28(2), 466–479. doi:10.1016/j.matdes.2005.09.006.

    Article  Google Scholar 

  • Mazhar, M. I., Kara, S., & Kaebernick, H. (2007). Remaining life estimation of used components in consumer products: Life cycle data analysis by Weibull and artificial neural networks. Journal of Operations Management, 25(6), 1184–1193. doi:10.1016/j.jom.2007.01.021.

    Article  Google Scholar 

  • Meng, X., Jiang, Z., & Huang, G. Q. (2007). On the module identification for product family development. The International Journal of Advanced Manufacturing Technology, 35(1–2), 26–40. doi:10.1007/s00170-006-0712-2.

    Article  Google Scholar 

  • Moon, S. K., & McAdams, D. A. (2012). A market-based design strategy for a universal product family. Journal of Mechanical Design, 134(11), 111007. doi:10.1115/1.4007395.

    Article  Google Scholar 

  • Moon, S. K., Park, K. J., & Simpson, T. W. (2014). Platform design variable identification for a product family using multi-objective particle swarm optimization. Research in Engineering Design, 25(2), 95–108. doi:10.1007/s00163-013-0166-0.

    Article  Google Scholar 

  • Moon, S. K., Simpson, T. W., & Kumara, S. R. T. (2010). A methodology for knowledge discovery to support product family design. Annals of Operations Research, 174(1), 201–218. doi:10.1007/s10479-008-0349-7.

    Article  Google Scholar 

  • Mudgal, S., Tinetti, B., Lyons, L., Lavelle, P., Cornier, A., & Sannier, C. (2011). Preparatory studies for ecodesign requirements of EuPs (III): Lot 25: Non-tertiary coffee machines, Task 2: Economic and market analysis, Report for European Commission (DG ENER) (pp. 1–35). Paris, France: BIO Intelligence Service.

  • Newcomb, P. J., Bras, B., & Rosen, D. W. (1998). Implications of modularity on product design for the life cycle. Journal of Mechanical Design, 120(3), 483–490.

    Article  Google Scholar 

  • Otto, K. N., & Wood, K. L. (2001). Product design: Techniques in reverse engineering and new product development: Upper Saddle River. New Jersey: Prentice Hall.

    Google Scholar 

  • Pimmler, T. U., & Eppinger, S. D. (1994). Integration analysis of product decompositions. Paper presented at the Proceedings of the ASME design engineering technical conferences—6th international conference on design theory and methodology Minneapolis, MN, USA.

  • Ramani, K., Ramanujan, D., Bernstein, W. Z., Zhao, F., Sutherland, J., Handwerker, C., et al. (2010). Integrated sustainable life cycle design: A review. Journal of Mechanical Design, 132(9), 091004. doi:10.1115/1.4002308.

    Article  Google Scholar 

  • Smith, S., & Chen, W.-H. (2011). Rule-based recursive selective disassembly sequence planning for green design. Advanced Engineering Informatics, 25(1), 77–87. doi:10.1016/j.aei.2010.03.002.

  • Smith, S., Smith, G., & Chen, W.-H. (2012). Disassembly sequence structure graphs: An optimal approach for multiple-target selective disassembly sequence planning. Advanced Engineering Informatics, 26(2), 306–316. doi:10.1016/j.aei.2011.11.003.

  • Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2003). Identifying modular and integrative systems and their impact on design team interactions. Journal of Mechanical Design, 125(2), 240–252. doi:10.1115/1.1564074.

  • Thebeau, R. E. (2001). Knowledge management of system interfaces and interactions from product development processes. M.S. Thesis, Massachusetts Institute of Technology, USA.

  • Thierry, M., Salomon, M., van Nunen, J., & van Wassenhove, L. (1995). Strategic issues in product recovery management. California Management Review, 37(2), 114–135.

  • Tseng, H.-E., Chang, C.-C., & Li, J.-D. (2008). Modular design to support green life-cycle engineering. Expert Systems with Applications, 34(4), 2524–2537. doi:10.1016/j.eswa.2007.04.018.

    Article  Google Scholar 

  • Ulrich, K. T. (1995). The role of product architecture in the manufacturing firm. Research Policy, 24(3), 419–440. doi:10.1016/0048-7333(94)00775-3.

    Article  Google Scholar 

  • Ulrich, K. T., & Eppinger, S. D. (2008). Product design and development (4th ed.). Boston: McGraw-Hill Higher Education.

    Google Scholar 

  • Van Dongen, S. M. (2000). Graph clustering by flow simulation. Ph.D. Thesis, Utrecht University, Netherlands.

  • Yan, J., Feng, C., & Cheng, K. (2012). Sustainability-oriented product modular design using kernel-based fuzzy c-means clustering and genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(10), 1635–1647.

    Article  Google Scholar 

  • Yigit, A. S., Ulsoy, A. G., & Allahverdi, A. (2002). Optimizing modular product design for reconfigurable manufacturing. Journal of Intelligent Manufacturing, 13(4), 309–316. doi:10.1023/a:1016032714680.

    Article  Google Scholar 

  • Yu, T.-L., Yassine, A., & Goldberg, D. (2007). An information theoretic method for developing modular architectures using genetic algorithms. Research in Engineering Design, 18(2), 91–109. doi:10.1007/s00163-007-0030-1.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an AcRF Tier 1 Grant (RG94/13) from Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Ki Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Moon, S.K. Eco-modular product architecture identification and assessment for product recovery. J Intell Manuf 30, 383–403 (2019). https://doi.org/10.1007/s10845-016-1253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1253-7

Keywords

Navigation