Skip to main content
Log in

A comparison of machine learning methods for cutting parameters prediction in high speed turning process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Support vector machines are arguably one of the most successful methods for data classification, but when using them in regression problems, literature suggests that their performance is no longer state-of-the-art. This paper compares performances of three machine learning methods for the prediction of independent output cutting parameters in a high speed turning process. Observed parameters were the surface roughness (Ra), cutting force \((F_{c})\), and tool lifetime (T). For the modelling, support vector regression (SVR), polynomial (quadratic) regression, and artificial neural network (ANN) were used. In this research, polynomial regression has outperformed SVR and ANN in the case of \(F_{c}\) and Ra prediction, while ANN had the best performance in the case of T, but also the worst performance in the case of \(F_{c}\) and Ra. The study has also shown that in SVR, the polynomial kernel has outperformed linear kernel and RBF kernel. In addition, there was no significant difference in performance between SVR and polynomial regression for prediction of all three output machining parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H. T. (2012). Learning from data. A short course. AMLbook.com.

  • Aydin, M., Ucar, M., Cengiz, A., Kurt, M., & Bakir, B. (2014). A methodology for cutting force prediction in side milling. Materials and Manufacturing Processes. doi:10.1080/10426914.2014.912315.

    Article  Google Scholar 

  • Bishop, C. M. (2005). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Brezocnik, M., Kovacic, M., & Ficko, M. (2004). Prediction of surface roughness with genetic programming. Journal of Materials Processing Technology. doi:10.1016/j.jmatprotec.2004.09.004.

    Article  Google Scholar 

  • Campbell, C., & Ying, Y. (2011). Learning with support vector machines. In Synthesis Lectures on Artificial Intelligence and Machine Learning. California: Morgan and Claypool Publishers. doi:10.2200/S00324ED1V01Y201102AIM010.

    Article  Google Scholar 

  • Cho, S., Asfour, S., Onar, A., & Kaundinya, N. (2005). Tool breakage detection using support vector machine learning in a milling process. International Journal of Machine Tools and Manufacture,. doi:10.1016/j.ijmachtools.2004.08.016.

    Article  Google Scholar 

  • Cukor, G., & Jurkovic, Z. (2010). Optimization of turning using evolutionary algorithms. Engineering Review, 30, 1–10.

    Google Scholar 

  • Cukor, G., Jurkovic, Z., & Sekulic, M. (2011). Rotatable central composite design of experiments versus Taguchi method in the optimization of turning. Metalurgija, 50, 17–20.

    Google Scholar 

  • Hrelja, M., Klancnik, S., Irgolic, T., Paulic, M., Jurkovic, Z., Balic, J., & Brezocnik, M. (2014). Particle swarm optimization approach for modelling a turning process. Advances in Production Engineering & Management. doi:10.14743/apem2014.1.173.

    Article  Google Scholar 

  • Jurkovic, Z., Cukor, G., & Andrejcak, I. (2010). Improving the surface roughness at longitudinal turning using the different optimization methods. Technical Gazette, 17, 397–402.

    Google Scholar 

  • Kocyigit, N. (2015). Fault and sensor error diagnostic strategies for a vapour compression refrigeration system by using fuzzy inference systems and artificial neural network. International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2014.10.017.

    Article  Google Scholar 

  • Krizek, Z., Jurkovic, Z., & Brezocnik, M. (2008). Analytical study of different approaches to determine optimal cutting force. In 12th international research/expert conference on the trends in the development of machinery and associated technology (TMT). Istanbul, Turkey, August 26–30.

  • Lela, B., Bajic, D., & Jozic, S. (2009). Regression analysis, support vector machines, and Bayesian neural network approaches to modelling surface roughness in face milling. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-008-1678-z.

    Article  Google Scholar 

  • Mahesh, G., Muthu, S., & Devadasan, S. R. (2015). Prediction of surface roughness of end milling operation using genetic algorithm. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-014-6425-z.

    Article  Google Scholar 

  • Mgwatu, M. I. (2013). Integrated approach for optimising machining parameters, tool wear and surface quality in multi pass turning operations. Advances in Production Engineering & Management. doi:10.14743/apem2013.4.168.

  • Saric, T., Simunovic, G., & Simunovic, K. (2013). Use of neural networks in prediction and simulation of steel surface roughness. International Journal of Simulation Modelling. doi:10.2507/IJSIMM12(4)2.241.

    Article  Google Scholar 

  • Senthilkumar, N., Tamizharasan, T., & Anandakrishnan, V. (2013). An ANN approach for predicting the cutting inserts performances of different geometries in hard turning. Advances in Production Engineering & Management. doi:10.14743/apem2013.4.170.

  • Sivarao, Brevern, P., & El-Tayeb, N. S. M. (2009a). A new approach of adaptive network-based fuzzy inference system modeling in laser processing-A graphical user interface based. Journal of Computer Science. doi:10.3844/jcssp.2009.704.710.

    Article  Google Scholar 

  • Sivarao, Brevern, P., El-Tayeb, N. S. M., & Vengkatesh, V. C. (2009b). Neural network multi-layer perceptron modeling for surface quality prediction in laser machining. Application in Machine Learning. doi:10.5772/8612.

    Google Scholar 

  • Sivarao, Brevern, P., El-Tayeb, N. S. M., & Vengkatesh, V. C. (2009c). Modeling, testing and experimental validation of laser machining micro quality response by artificial neural network. International Journal of Engineering & Technology, 9(9), 161–166.

  • Sivarao, Brevern, P., El-Tayeb, N. S. M., & Vengkatesh, V. C. (2009d). Modeling of laser processing cut quality by adaptive network-based fuzzy inference system (ANFIS). Journal of Mechanical Engineering Science. doi:10.1243/09544062JMES1319.

    Google Scholar 

  • Smola, A. J., & Scholkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing. doi:10.1023/B:STCO.0000035301.49549.88.

    Article  Google Scholar 

  • Tamang, S. K., & Chandrasekaran, M. (2015). Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al/SiCp MMC, using conventional and soft computing techniques. Advances in Production Engineering & Management. doi:10.14743/apem2015.2.192.

    Article  Google Scholar 

  • Tomar, D., & Agarwal, S. (2015). Twin support vector machine: A review from 2007 to 2014. Egyptian Informatics Journal. doi:10.1016/j.eij.2014.12.003.

    Article  Google Scholar 

  • Vapnik, V. N. (1999). The nature of statistical learning theory. New York: Springer.

    Google Scholar 

  • Viharos, Z. J., & Kis, K. B. (2011). Support Vector Machine (SVM) based general model building algorithm for production control. In Preprints of the 18th International Federation of Automatic Control (IFAC) World Congress (pp. 14103–14108). Milano, Italy, August 28–September 2.

  • Wang, H., Shao, H., Chen, M., & Hu, D. (2003). On-line tool breakage monitoring in turning. Journal of materials Processing Technology. doi:10.1016/S0924-0136(03)00227-9.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported and funded by the University of Rijeka, Croatia, (OJ 212, MT 137), and Ministry of Science, Education and Sport of the Republic of Croatia under bilateral cooperation with University of Maribor, Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Jurkovic.

Appendix

Appendix

See the Appendix Table 3.

Table 3 Full data set consisting out of 41 data point

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurkovic, Z., Cukor, G., Brezocnik, M. et al. A comparison of machine learning methods for cutting parameters prediction in high speed turning process. J Intell Manuf 29, 1683–1693 (2018). https://doi.org/10.1007/s10845-016-1206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1206-1

Keywords

Navigation