Skip to main content
Log in

Multi-objective modified differential evolution algorithm with archive-base mutation for solving multi-objective \(p\)-xylene oxidation process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Maximizing the diversity of the obtained objective vectors and increasing the convergence speed to the true Pareto front are two important issues in the design of multi-objective evolutionary algorithms (MOEAs). To solve complex multi-objective optimization problems (MOPs), a multi-objective modified differential evolution algorithm with archive-base mutation (MOMDE-AM) is proposed. In MOMDE-AM, with the purpose of reducing the loss of population evolution information, a modified mutation strategy with archive is introduced, which could utilize several useful inferior solutions and provide promising direction information toward the true Pareto front. The performance of MOMDE-AM is compared with five other MOEAs on five bi-objective and five tri-objective optimization problems. The simulation and statistical analysis results indicate that the overall performance of MOMDE-AM is better than those of the compared algorithms on these test functions. Finally, MOMDE-AM is used to optimize ten operation conditions of the \(p\)-xylene oxidation reaction process; the results show that MOMDE-AM is an effective and efficient optimization tool for solving actual MOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbass, H. A. (2002). The self-adaptive pareto differential evolution algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02. 2002 (Vol. 1, pp. 831–836).

  • Abbass, H. A., Sarker, R., & Newton, C. (2001). PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In Proceedings of the 2001 Congress on Evolutionary Computation, (Vol. 2, pp. 971–978).

  • Ali, M., Siarry, P., & Pant, M. (2012). An efficient differential evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research, 217(2), 404–416.

    Google Scholar 

  • Cao, G., Pisu, M., & Morbidelli, M. (1994). A lumped kinetic model for liquid-phase catalytic oxidation of \(p\)-xylene to terephthalic acid. Chemical Engineering Science, 49(24), 5775–5788.

    Article  Google Scholar 

  • Cao, G., Servida, A., Pisu, M., & Morbidelli, M. (1994). Kinetics of p-xylene liquid-phase catalytic oxidation. AIChE Journal, 40(7), 1156–1166.

    Article  Google Scholar 

  • Chen, X., Du, W., & Qian, F. (2014). Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization. Chemometrics and Intelligent Laboratory Systems, 136, 85–96.

    Article  Google Scholar 

  • Chen, Y., Fulton, J. L., & Partenheimer, W. (2005). The structure of the homogeneous oxidation catalyst, Mn (II)(Br-1) x, in supercritical water: An X-ray absorption fine-structure study. Journal of the American Chemical Society, 127(40), 14085–14093.

    Article  Google Scholar 

  • Cheng, Y., Li, X., Wang, L., & Wang, Q. (2006). Optimum ratio of Co/Mn in the liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Industrial and Engineering Chemistry Research, 45(12), 4156–4162.

    Article  Google Scholar 

  • Cincotti, A., Orrù, R., & Cao, G. (1999). Kinetics and related engineering aspects of catalytic liquid-phase oxidation of p-xylene to terephthalic acid. Catalysis Today, 52(2), 331–347.

    Article  Google Scholar 

  • Cincotti, A., Orru, R., Broi, A., & Cao, G. (1997). Effect of catalyst concentration and simulation of precipitation processes on liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Chemical Engineering Science, 52(21), 4205–4213.

    Article  Google Scholar 

  • Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.

    Article  Google Scholar 

  • Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems (Vol. 242). Berlin: Springer.

    Book  Google Scholar 

  • Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Transactions on Computational Intelligence Magazine, 1(1), 28–36.

    Article  Google Scholar 

  • Daneshyari, M., & Yen, G. G. (2011). Cultural-based multiobjective particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(2), 553–567.

    Article  Google Scholar 

  • Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

    Article  Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). New York: Wiley.

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multi-objective optimization test problems. In Proceedings of the Congress on Evolutionary Computation (CEC-2002),(Honolulu, USA), (pp. 825–830): Proceedings of the Congress on Evolutionary Computation (CEC-2002),(Honolulu, USA).

  • Fan, Q., & Yan, X. (2015). Differential evolution algorithm with self-adaptive strategy and control parameters for P-xylene oxidation process optimization. Soft Computing, 19(5), 1363–1391.

  • Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1), 1–16.

    Article  Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 28(1), 26–37.

    Article  Google Scholar 

  • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.

    Article  Google Scholar 

  • Geng, D.-Z., Chen, X., Shao, Z.-J., & Qian, J.-X. (2006). Interface between MATLAB and Aspen Plus based on COM technology and its advanced application. Control and Instruments in Chemical Industry, 33(3), 30.

    Google Scholar 

  • Hong, H., Wenli, D., Feng, Q., & Weimin, Z. (2010). Operation condition optimization of p-xylene oxidation reaction process based on a fuzzy adaptive immune algorithm. Industrial and Engineering Chemistry Research, 49(12), 5683–5693.

    Article  Google Scholar 

  • Jamali, A., Khaleghi, E., Gholaminezhad, I., Nariman-Zadeh, N., Gholaminia, B., & Jamal-Omidi, A. (2014). Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0967-7.

  • Kenigsberg, T., Ariko, N., & Agabekov, V. (1995). Effect of catalyst composition on decreasing of CO2 and CO formation in synthesis of aromatic acids. Energy Conversion and Management, 36(6), 677–680.

    Article  Google Scholar 

  • Kleerebezem, R., & Lettinga, G. (2000). High-rate anaerobic treatment of purified terephthalic acid wastewater. Water Science and Technology, 42(5–6), 259–268.

    Google Scholar 

  • Kukkonen, S., & Lampinen, J. (2004). An extension of generalized differential evolution for multi-objective optimization with constraints. In Parallel Problem Solving from Nature-PPSN VIII (pp. 752–761). Springer.

  • Kukkonen, S., & Lampinen, J. (2005). GDE3: The third evolution step of generalized differential evolution. In Proceedings of the 2001 Congress on Evolutionary Computation, (Vol. 1, pp. 443–450).

  • Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302.

    Article  Google Scholar 

  • Madavan, N. K. (2002). Multiobjective optimization using a Pareto differential evolution approach. In Proceedings of the World on Congress on Computational Intelligence, (Vol. 2, pp. 1145–1150).

  • Mandli, A. R., & Modak, J. M. (2012). Evolutionary algorithm for the determination of optimal mode of bioreactor operation. Industrial and Engineering Chemistry Research, 51(4), 1796–1808.

    Article  Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization (Vol. 12). Berlin: Springer.

    Google Scholar 

  • Mu, S., Su, H., Gu, Y., & Chu, J. (2003). Multi-objective optimization of industrial purified terephthalic acid oxidation process. Chinese Journal of Chemical Engineering, 11(5), 536–541.

    Google Scholar 

  • Partenheimer, W. (1995). Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catalysis Today, 23(2), 69–158.

    Article  Google Scholar 

  • Ray, T., Tai, K., & Seow, C. (2001). An evolutionary algorithm for multiobjective optimization. Engineering Optimization, 33(3), 399–424.

    Article  Google Scholar 

  • Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 14(1), 135–144.

    Article  Google Scholar 

  • Robič, T., & Filipič, B. (2005). DEMO: Differential evolution for multiobjective optimization. In Evolutionary Multi-Criterion Optimization (pp. 520–533). Springer.

  • Santana-Quintero, L. V., Hernández-Díaz, A. G., Molina, J., Coello Coello, C. A., & Caballero, R. (2010). DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems. Computers and Operations Research, 37(3), 470–480.

    Article  Google Scholar 

  • Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st international Conference on Genetic Algorithms (pp. 93–100). L. Erlbaum Associates Inc.

  • Sharma, S., & Rangaiah, G. P. (2013). An improved multi-objective differential evolution with a termination criterion for optimizing chemical processes. Computers and Chemical Engineering, 56, 155–173.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1995). Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley: ICSI.

    Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Storn, R., Price, K., & Lampinen, J. (2005). Differential evolution—A practical approach to global optimization. Berlin: Springer.

    Google Scholar 

  • Suman, B., Hoda, N., & Jha, S. (2010). Orthogonal simulated annealing for multiobjective optimization. Computers and Chemical Engineering, 34(10), 1618–1631.

    Article  Google Scholar 

  • Sun, W., Pan, Y., Zhao, L., & Zhou, X. (2008). Simplified free–radical reaction Kinetics for p-xylene oxidation to terephthalic acid. Chemical Engineering and Technology, 31(10), 1402–1409.

    Article  Google Scholar 

  • Triki, H., Mellouli, A., & Masmoudi, F. (2014). A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2). Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0984-6.

  • Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Technical Report TR-98-03, Wright-Patterson AFB, Ohio: Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology.

  • Wang, X., & Tang, L. (2013). Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution. Industrial and Engineering Chemistry Research, 52(40), 14415–14428.

    Article  Google Scholar 

  • Wang, Y.-N., Wu, L.-H., & Yuan, X.-F. (2010). Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Computing, 14(3), 193–209.

    Article  Google Scholar 

  • Wang, Y., & Zeng, J.-C. (2013). A multi-objective artificial physics optimization algorithm based on ranks of individuals. Soft Computing, 17(6), 939–952.

    Article  Google Scholar 

  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1(6), 80–83.

    Article  Google Scholar 

  • Yan, X., Yu, J., & Qian, F. (2005). Development of an artifical neural network model for combustion reaction in p-xylene oxidation reactor. Polyester Industry, 1, 004.

    Google Scholar 

  • Yan, X., Du, W., & Qian, F. (2004). Development of a kinetic model for industrial oxidation of p-xylene by RBF-PLS and CCA. AIChE Journal, 50(6), 1169–1176.

    Article  Google Scholar 

  • Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 17(5), 721–736.

    Article  Google Scholar 

  • Zhang, J., & Sanderson, A. C. (2008). Self-adaptive multi-objective differential evolution with direction information provided by archived inferior solutions. In Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on (pp. 2801–2810): IEEE.

  • Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

    Article  Google Scholar 

  • Zhang, Y., Gong, D.-W., & Jiang, Y.-N. (2009). Barebones particle swarm for multi-objective optimisation problems. International Journal of Innovative Computing and Applications, 2(2), 86–99.

    Article  Google Scholar 

  • Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK).

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the following foundations: 973 Project of China (2013CB733605), National Natural Science Foundation of China (21176073) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yan.

Appendix

Appendix

See Table 11.

Table 11 Operation conditions of PX oxidation reaction process at 10 a.m. on 16 july 2009

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Yan, X. Multi-objective modified differential evolution algorithm with archive-base mutation for solving multi-objective \(p\)-xylene oxidation process. J Intell Manuf 29, 35–49 (2018). https://doi.org/10.1007/s10845-015-1087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1087-8

Keywords

Navigation