Skip to main content
Log in

On performance enhancement of parallel kinematic machine

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a spatial three degrees of freedom (DOF) parallel kinematic machine enhanced by a passive leg and a web-based remote control system. First, the geometric model of the parallel kinematic machine is addressed. In the mechanism, a fourth kinematic link—a passive link connecting the base center to the moving platform center—is introduced. Each of the three parallel limbs is actuated by one prismatic joint, respectively. The additional link has three passive DOF, namely two rotations around x and y axes and one translation along z axis. With the existence of this link, the unwanted motion of the tool (located in the moving platform) is constrained. The fourth link also enhances the global stiffness of the structure and distributes the torque from machining. With the kinematic model, a web-based remote control approach is applied. The concept of the web-based remote manipulation approach is introduced and the principles behind the method are explored in detail. Finally, a remote manipulation is demonstrated to the proposed structure using web-based remote control concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvares A., Ferreira J., Lorenzo R. (2008) An integrated web-based CAD/CAPP/CAM system for the remote design and manufacture of feature-based cylindrical parts. Journal of Intelligent Manufacturing 19(6): 643–659

    Article  Google Scholar 

  • Apte N., Zeid I. (2002) Evolution of transparent manufacturing: An architecture for a java-based controller of a CIM cell. Journal of Intelligent Manufacturing 13(2): 89–100

    Article  Google Scholar 

  • Banda K., Zeid I. (2006) To disassemble or not: A computational methodology for decision making. Journal of Intelligent Manufacturing 17(5): 621–634

    Article  Google Scholar 

  • Boër, C. R., Molinari-Tosatti, L., Smith, K. S. (eds) (1999) Parallel kinematic machines: Theoretical aspects and industrial requirements. Springer, New York

    Google Scholar 

  • Caccavale F., Siciliano B., Villani L. (2003) The tricept robot: Dynamics and impedance control. IEEE/ASME Transactions on Mechatronics 8(2): 263–268

    Article  Google Scholar 

  • Chen S. L., Chang T. H., Lin Y. C. (2006) Applications of equivalent components concept on the singularity analysis of TRR-XY hybrid parallel kinematic machine tools. International Journal of Advanced Manufacturing Technology 30(7–8): 778–788

    Article  Google Scholar 

  • Cheng H., Yiu Y., Li Z. X. (2003) Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Transactions on Mechatronics 8: 483–491

    Article  Google Scholar 

  • El-Khasawneh B. S., Ferreira P. M. et al (1999) The Tetrahedral tripod. In: Boër CR (eds) Parallel kinematic machines: Theoretical aspects and industrial requirements. Springer, New York, pp 419–430

    Chapter  Google Scholar 

  • e-MNI. (2002). http://www.e-manufacturing.com/.

  • GE Fanuc. (2002). http://www.gefanuc.com/products/software/cimplicity_home.asp.

  • Gosselin C. M., Zhang D. (2002) Stiffness analysis of parallel mechanisms using a lumped model. International Journal of Robotics and Automation 17: 17–27

    Google Scholar 

  • Hitachi Seiki. (2002). http://www.hitachiseikiusa.com/tradeshows/Westec/flexlink.html.

  • Honegger, M., Codourey, A., & Burdet, E. (1997). Adaptive control of the hexaglide, a 6 DOF parallel manipulator. In Proceedings of the 1997 IEEE international conference on robotics and automation, (Vol. 1, pp. 543–548).

  • Kochan A. (1996) Parallel robots perfect propellers. Industrial Robot 23(4): 27–30

    Article  Google Scholar 

  • Mazak. (2002). http://www.mazak.co.jp/English/sMT&IT/frame2-factory.html

  • MDSI Inc. (2002). http://www.mdsi2.com/products/opencnc.htm.

  • Mitchell J. H., Jacob R., Mika N. (2006) Optimization of a spherical mechanism for a minimally invasive surgical robot: Theoretical and experimental approaches. IEEE Transactions on Biomedical Engineering 53: 1440–1445

    Article  Google Scholar 

  • Nof S. Y. (2006) Collaborative e-work and e-manufacturing: Challenges for production and logistics managers. Journal of Intelligent Manufacturing 17(6): 689–701

    Article  Google Scholar 

  • Pierrot, F. (1998). From hexa to hexaM. International Parallel kinematik-kolloquium IPK’98, ETH Zurich, pp. 75–84.

  • Potapov V. A. (1996) Is success of new-concept machine tools possible?. Russian Engineering Research 16: 81–86

    Google Scholar 

  • Pritschow G., Wurst K.-H. (1997) Systematic design of hexapods and other parallel link systems. Annals of the CIRP 46(1): 291–295

    Article  Google Scholar 

  • Pritschow G. et al (1999) Research and development in the field of parallel kinematic systems in Europe. In: Boër CR (eds) Parallel kinematic machines: Theoretical aspects and industrial requirements. Springer, New York, pp 1–16

    Google Scholar 

  • Rao A., Rao P., Saha S. (2005) Dimensional design of hexaslides for optimal workspace and dexterity. IEEE Transactions on Robotics 21: 444–449

    Article  Google Scholar 

  • Refaat S., Herve J. M., Nahavandi S. (2007) Two-mode overconstrained three-DOFs rotational translational linear motor based parallel-kinematics mechanism for machine tool applications. Robotica 25: 461–466

    Article  Google Scholar 

  • Siciliano B. (1999) The tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm. Robotica 17(4): 437–445

    Article  Google Scholar 

  • Sowizral H., Rushforth K., Deering M. (2001) The java 3D API specification. Addison-Wesley, Boston

    Google Scholar 

  • Stock M., Miller K. (2003) Optimal kinematic design of spatial parallel manipulators: Application to linear delta robot. Journal Mechanical Design 125: 292–301

    Article  Google Scholar 

  • Suzuki M., Watanabe K., Shibukawa T., Tooyama T., Hattori K. (1997) Development of milling machine with parallel mechanism. Toyota Technical Review 47(1): 125–130

    Google Scholar 

  • Tlusty J., Ziegert J., Ridgeway S. (1999) Fundamental comparison of the use of serial and parallel kinematics for machine tools. Annals of the CIRP 48(1): 351–356

    Article  Google Scholar 

  • Tönshoff, H. K., Soehner, C., & Ahlers, H. (1998). A new machine tool concept for laser machining. In Proceedings of international seminar on improving machine tool performance, San Sebastian, (pp. 199–124).

  • Wang, L., Sams, R., Verner, M., & Xi, F. (2002). Web-based and sensor-driven device monitoring and control using java 3D. In Proceedings of 12th International Conference on Flexible Automation & Intelligent Manufacturing, (pp. 772–761).

  • Wang, G., Wang, Y., Zhao, J., & Chen, G. (2010). Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm. Journal of Intelligent Manufacturing. doi:10.1007/s10845-009-0376-5.

  • Waurzyniak P. (2001) Electronic intelligence in manufacturing. SME Manufacturing Engineering, 127(3): 44–67

    Google Scholar 

  • Yang G. L., Chen I. M., Chen W. H., Lin W. (2004) Kinematic design of a six-DOF parallel-kinematics machine with decoupled-motion architecture. IEEE Transactions on Robotics and Automation 20(5): 876–884

    Article  Google Scholar 

  • Zhang D., Gosselin C. M. (2002) Kinetostatic analysis and design optimization of the tricept machine tool family. Journal of Manufacturing Science and Engineering 124(3): 725–733

    Article  Google Scholar 

  • Zhang D. (2005) On stiffness improvement of the tricept machine tool. Robotica 23(03): 377–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Wang, L., Gao, Z. et al. On performance enhancement of parallel kinematic machine. J Intell Manuf 24, 267–276 (2013). https://doi.org/10.1007/s10845-011-0583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-011-0583-8

Keywords

Navigation