Skip to main content

Advertisement

Log in

Inbreeding depression in monarch butterflies

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Monarch butterflies and their unique system of multigenerational migration have long fascinated the public, and concerns for the fate of this charismatic insect have grown due to the consistent declines in overwintering colony size over the last 20 years. Risks to this migratory insect have been considered in terms of climate change, habitat and thus population fragmentation, and decreased host plant availability. However, another obvious danger, that of decreased heterozygosity resulting from decreasing population size, has yet to be explored. Here we report experimental evidence for immediate inbreeding depression in individuals from the migratory population. Inbred matings produced less viable eggs and inbred offspring had higher developmental mortality and shorter lifespans. We discuss these results in the context of monarch migration extinction risk and suggest that additional genetic monitoring should be undertaken to protect this iconic animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altizer SM (2001) Migratory behaviour and host–parasite co-evolution in natural populations of monarch butterflies infected with a protozoan parasite. Evolut Ecol Res 3:567–581

    Google Scholar 

  • Altizer S, Hobson KA, Davis AK, de Roode JC, Wassenaar LI (2015) Do healthy monarchs migrate farther? Tracking Natal origins of parasitized versus uninfected Monarch butterflies overwintering in Mexico. PLoS One 10:e0141371

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartel RA, Oberhauser KS, de Roode JC, Altizer SM (2011) Monarch butterfly migration and parasite transmission in eastern North America. Ecology 92:342–51

  • Bates D, Maechler M, Bolker B, Walker S (2014). Lme4: linear mixed-effects models using S4 classes. R package version 1.1-6. http://cran.r-project.org/package=lme4

  • Brower LP, Pyle RM (2004) The interchange of migratory monarchs between Mexico and the western United States, and the importance of floral corridors to the fall and spring migrations. Conservation of migratory pollinators and their nectar corridors in North America. Arizona-Sonora Desert Museum, Natural History of the Sonoran Desert Region, pp 144–166

  • Brower LP, Calvert WH, Hedrick LE, Christian J (1977) Biological observations on an overwintering colony of monarch butterflies (Danaus plexippus, Danaidae) in Mexico. J Lepidopterists’ Soc 31:232–241

    Google Scholar 

  • Brower LP, Kust DR, Rendon-Salinas E, Serrano EG, Kust KR, Miller J, Fernandez del Rey C, Pape K (2004) Catastrophic winter storm mortality of monarch butterflies in Mexico during January 2002. The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 151–166

    Google Scholar 

  • Brower LP, Taylor OR, Williams EH, Slayback DA, Zubieta RR, Ramír ez MI (2012) Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv Divers 5:95–100. doi:10.1111/j.1752-4598.2011.00142.x

    Article  Google Scholar 

  • Calvert WH (2004) Two methods of estimating overwintering monarch population size in Mexico. In: Oberhauser KS, Solensky MJ (eds) The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 121–128

    Google Scholar 

  • Crnokrak P, Barrett SCH (2002) Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358

    Article  PubMed  Google Scholar 

  • de Roode JC, Gold LR, Altizer S (2007) Virulence determinants in a natural butterfly-parasite system. Parasitology 134:657–668. doi:10.1017/S0031182006002009

    Article  PubMed  Google Scholar 

  • de Roode JC, Yates AJ, Altizer S (2008) Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. PNAS 105:7489–7494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Roode JC, Chi J, Rarick RM, Altizer S (2009) Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus). Oecologia 161:67–75

    Article  PubMed  Google Scholar 

  • Drayton JM, Jennions MD (2011) Inbreeding and measures of immune function in the cricket Teleogryllus commodus. Behav Ecol 22:486–492

    Article  Google Scholar 

  • Fox CW, Scheibly KL, Reed DH (2008) Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 62:2236–2249

    Article  PubMed  Google Scholar 

  • Flockhart DTT, Pichancourt JB, Norris DR, Martin TG (2014) Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J Anim Ecol 84:155–165

    Article  PubMed  Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland (Mass.), pp 19–34

    Google Scholar 

  • Giuliano WM, Accamando AK, McAdams EJ (2004) Lepidoptera–habitat relationships in urban parks. Urban Ecosyst 7:361–370

    Article  Google Scholar 

  • Haikola S, Fortelius W, O’Hara RB, Kuussaari M, Wahlberg N, Saccheri IJ, Singer MC, Hanski I (2001) Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations. Conserv Genet 2:325–335

    Article  Google Scholar 

  • Hall RJ, Altizer S, Bartel RA (2014) Greater migratory propensity in hosts lowers pathogen transmission and impacts. J Anim Ecol 83:1068–1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedrick PW (1994) Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73:363–372

    Article  PubMed  Google Scholar 

  • Hill Jr. HF, Wenner AM, Wells PH (1976) Reproductive behavior in an overwintering aggregation of Monarch butterflies. American Midland Naturalist 95:10–19. http://www.jstor.org/stable/2424229

  • Howard E, Davis AK (2004) Documenting the spring movements of monarch butterflies with Journey North, a citizen science program. In: Oberhauser KS, Solensky MJ (eds) The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 105–116

    Google Scholar 

  • Hughes PR, Radke CD, Renwick AA (1993) A simple, low-input method for continuous laboratory rearing of the monarch butterfly (Lepidoptera: Danaidae) for research. Am Entomol 39:109–111

    Article  Google Scholar 

  • Jeanpierre B, Oberhauser K, Freeman C (2005) Characteristics of professional development that effect change in secondary science teachers’ classroom practices. J Res Sci Teach 42:668–690

    Article  Google Scholar 

  • Kimura M, Maruyama T, Crow JF (1963) The mutation load in small populations. Genetics 48:1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Gabriel W (1990) Mutation load and the survival of small populations. Evolution 44:1725–1737

    Article  Google Scholar 

  • Lyons JI, Pierce AA, Barribeau SM, Sternberg ED, Mongue AJ, de Roode JC (2012) Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol Ecol 21:3433–3444

    Article  PubMed  Google Scholar 

  • Malcolm SB (1993) Conservation of monarch butterfly migration in North America: an endangered phenomenon. Biol Conserv Monarch Butterfly 38:357

    Google Scholar 

  • McLaughlin RE, Myers J (1970) Ophryocystis elektroscirrha sp. n., a Neogregarine Pathogen of the Monarch Butterfly Danaus plexippus (L.) and the Florida Queen Butterfly D. gilippus berenice Cramer. J Protozool 17:300–305. doi:10.1111/j.1550-7408.1970.tb02375.x

    Article  Google Scholar 

  • Mongue AJ, Ahmad MA, Tsai MV, de Roode JC (2014) Testing for cryptic female choice in monarch butterflies. Behav Ecol 26:386–395

    Article  Google Scholar 

  • Morris GM, Kline C, Morris SM (2015) Status of Danaus plexippus population in Arizona. J Lepidopterists’ Soc 69:91–107

    Article  Google Scholar 

  • Nieminen M, Singer MC, Fortelius W, Schöps K, Hanski I (2001) Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am Nat 157:237–244

    Article  CAS  PubMed  Google Scholar 

  • Pierce AA, Zalucki MP, Bangura M, Udawatta M, Kronforst MR, Altizer S, Haeger JF, de Roode JC (2014) Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proc R Soc B Biol Sci 281:20142230. doi:10.1098/rspb.2014.2230

    Article  Google Scholar 

  • R Development Core Team R. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org

  • Rantala MJ, Viitaniemi H, Roff DA (2011) Effects of inbreeding on potential and realized immune responses in Tenebrio molitor. Parasitology 138:906–912

  • Reid JM, Arcese P, Keller LF (2003) Inbreeding depresses immune response in song sparrows (Melospiza melodia): direct and inter-generational effects. Proc Biol Sci 270:2151–2157

    Article  PubMed  PubMed Central  Google Scholar 

  • Saccheri IJ, Brakefield PM, Nichols RA (1996) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution 2000–2013

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

  • Saccheri IJ, Brakefield PM, Nichols RA (2014) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution 50:2000–2013

    Article  Google Scholar 

  • Satterfield DA, Maerz JC, Altizer S (2015) Loss of migratory behaviour increases infection risk for a butterfly host. Proc R Soc B Biol Sci 282

  • Urquhart FA (1976) Found at last—Monarchs winter home. National Geographic 150:161–173

    Google Scholar 

  • Urquhart FA, Urquhart NR (1978) Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico. Can J Zool 56:1759–1764

    Article  Google Scholar 

  • Vane-Wright RI (1993) The Columbus hypothesis: an explanation for the dramatic 19th century range expansion of the monarch butterfly. Biol Conserv Monarch Butterfly 38:179

    Google Scholar 

  • Vidal O, Rendón-salinas E (2014) Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol Conserv 180:165–175. doi:10.1016/j.biocon.2014.09.041

    Article  Google Scholar 

  • Vidal O, López-García J, Rendón-Salinas E (2014) Trends in Deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly biosphere reserve in Mexico. Conserv Biol 28:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassenaar LI, Hobson A (1998) Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc Natl Acad Sci USA 95:15436–15439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalucki MP, Clarke AR (2004) Monarchs across the Pacific: the Columbus hypothesis revisited. Biol J Linn Soc 82:111–121

    Article  Google Scholar 

  • Zalucki MP, Kitching RL (1982) The analysis and description of movement in adult Danaus plexippus L. (Lepidoptera: Danainae). Behaviour 80:174–198

    Article  Google Scholar 

  • Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF, Zalucki MP, Altizer S, de Roode JC, Reppert SM, Kronforst MR (2014) The genetics of monarch butterfly migration and warning colouration. Nature 514:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the de Roode lab for logistical and theoretical help with this project; R.D. Holt and M. Barfield for comments on the manuscript; and C. Chaffee and A. Gonzalez Rodriguez for discussion. This work was supported by National Science Foundation grant DEB-1257160 to J.C.D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Mongue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mongue, A.J., Tsai, M.V., Wayne, M.L. et al. Inbreeding depression in monarch butterflies. J Insect Conserv 20, 477–483 (2016). https://doi.org/10.1007/s10841-016-9880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9880-z

Keywords

Navigation