Skip to main content
Log in

Anatomical proximity between ganglionated plexi and epicardial adipose tissue in the left atrium: implication for 3D reconstructed epicardial adipose tissue-based ablation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

We sought to better understand the association between and clinical implications of ganglionated plexi (GPs), epicardial adipose tissue (EAT) in the left atrium (LA), and the initiation and maintenance of atrial fibrillation (AF).

Methods

Three-dimensional (3D) computed tomography (CT) reconstruction images of the LA, PVs, and LA-EAT were merged with the LA geometry for 25 with paroxysmal AF (PAF) and 15 with persistent AF (PerAF) scheduled for ablation. High-frequency stimulation (20 Hz, 25 mA, 10 ms) was performed at three sites within each of the five major anatomical LA GPs (superior left, inferior left, anterior right, inferior right, and Marshall tract GPs) to elicit vagal responses. Correspondence between the five GP areas and vagal response sites, LA-EAT, and complex fractionated atrial electrograms (CFAEs) was examined. The long-term outcomes of adjuvant LA-EAT-based ablation were assessed in 31 patients with PAF and 102 with PerAF.

Results

LA-EAT overlapped 93 ± 14 % of five major anatomical GP areas, and the vagal response sites and CFAE sites corresponded to 77 ± 23 and 76 ± 25 %, respectively (p < 0.05 for both vs. LA-EAT locations). The EAT-based ablation eliminated 97.6 % of the vagal response sites and lengthened the AF cycle from 160 ± 26 to 193 ± 27 ms (p < 0.001). The 2-year arrhythmia-free rate after EAT-based ablation was 72 % in the PAF group and 73 % in the PerAF group (p = 0.614).

Conclusions

LA-EAT tends to overlie the major anatomical GP areas including most of the active GP response sites and CFAEs associated with AF. Ablation of GPs and CFAEs may explain the long-term efficacy of EAT-based ablation following extensive encircling pulmonary vein isolation (EEPVI) for AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wanahita, N., Messerli, F. H., Bangalore, S., Gami, A. S., Somers, V. K., & Steinberg, J. S. (2008). Atrial fibrillation and obesity—results of a meta-analysis. American Heart Journal, 155(2), 315–315.

    Article  Google Scholar 

  2. Watanabe, H., Tanabe, N., Watanabe, T., Darbar, D., Roden, D. M., Sasaki, S., et al. (2008). Metabolic syndrome and risk of development of atrial fibrillation: the Niigata preventive medicine study. Circulation, 117(10), 1255–1260.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liang, K. W., Tsai, I. C., Lee, W. J., Lee, I. T., Lee, W. L., Lin, S. Y., et al. (2012). MRI measured epicardial adipose tissue thickness at the right AV groove differentiates inflammatory status in obese men with metabolic syndrome. Obesity, 20(3), 525–532.

    Article  CAS  PubMed  Google Scholar 

  4. Yorgun, H., Canpolat, U., Hazırolan, T., Ateş, A. H., Sunman, H., Dural, M., et al. (2013). Increased epicardial fat tissue is a marker of metabolic syndrome in adult patients. International Journal of Cardiology, 165(2), 308–313.

    Article  PubMed  Google Scholar 

  5. Thanassoulis, G., Massaro, J. M., O’Donnell, C. J., Hoffmann, U., Levy, D., Ellinor, P. T., et al. (2010). Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circulation. Arrhythmia and Electrophysiology, 3(4), 345–350.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nagashima, K., Okumura, Y., Watanabe, I., Nakai, T., Ohkubo, K., Kofune, T., et al. (2011). Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circulation Journal, 75(11), 2559–2565.

    Article  CAS  PubMed  Google Scholar 

  7. Masuda, M., Mizuno, H., Enchi, Y., Minamiguchi, H., Konishi, S., Ohtani, T., et al. (2015). Abundant epicardial adipose tissue surrounding the left atrium predicts early rather than late recurrence of atrial fibrillation after catheter ablation. Journal of Interventional Cardiac Electrophysiology, 44(1), 31–37.

    Article  PubMed  Google Scholar 

  8. Nagashima, K., Okumura, Y., Watanabe, I., Nakai, T., Ohkubo, K., Kofune, M., et al. (2012). Does location of epicardial adipose tissue correspond to endocardial high dominant frequency or complex fractionated atrial electrogram sites during atrial fibrillation? Circulation. Arrhythmia and Electrophysiology, 5(49), 676–683.

    Article  PubMed  Google Scholar 

  9. Nakatani, Y., Kumagai, K., Minami, K., Nakano, M., Inoue, H., & Oshima, S. (2015). Location of epicardial adipose tissue affects the efficacy of a combined dominant frequency and complex fractionated atrial electrogram ablation of atrial fibrillation. Heart Rhythm, 12(2), 257–265.

    Article  PubMed  Google Scholar 

  10. Nakagawa, H., Scherlag, B. J., Patterson, E., Ikeda, A., Lockwood, D., & Jackman, W. M. (2009). Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm, 6(12 Suppl), S26–34.

    Article  PubMed  Google Scholar 

  11. Armour, J. A., Murphy, D. A., Yuan, B. X., Macdonald, S., & Hopkins, D. A. (1997). Gross and microscopic anatomy of the human intrinsic cardiac nervous system. The Anatomical Record, 247(2), 289–298.

    Article  CAS  PubMed  Google Scholar 

  12. Haïssaguerre, M., Hocini, M., Sanders, P., Sacher, F., Rotter, M., Takahashi, Y., et al. (2005). Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of subsequent arrhythmias. Journal of Cardiovascular Electrophysiology, 16(11), 1138–1147.

    Article  PubMed  Google Scholar 

  13. Verma, A., Jiang, C. Y., Betts, T. R., Chen, J., Deisenhofer, I., Mantovan, R., et al. (2015). Approaches to catheter ablation for persistent atrial fibrillation. New England Journal of Medicine, 372(19), 1812–1822.

    Article  PubMed  Google Scholar 

  14. Nakahara, S., Hori, Y., Kobayashi, S., Sakai, Y., Taguchi, I., Takayanagi, K., et al. (2014). Epicardial adipose tissue-based defragmentation approach to persistent atrial fibrillation: its impact on complex fractionated electrograms and ablation outcome. Heart Rhythm, 11(8), 1343–1351.

    Article  PubMed  Google Scholar 

  15. Malcolme-Lawes, L. C., Lim, P. B., Wright, I., Kojodjojo, P., Koa-Wing, M., Jamil-Copley, S., et al. (2013). Characterization of the left atrial neural network and its impact on autonomic modification procedures. Circulation. Arrhythmia and Electrophysiology, 6(3), 632–640.

    Article  CAS  PubMed  Google Scholar 

  16. Katritsis, D. G., Pokushalov, E., Romanov, A., Giazitzoglou, E., Siontis, G. C., Po, S. S., et al. (2013). Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. Journal of the American College of Cardiology, 62(24), 2318–2325.

    Article  PubMed  Google Scholar 

  17. Yu, Y., Wei, C., Liu, L., Lian, A. L., Qu, X. F., & Yu, G. (2014). Atrial fibrillation increases sympathetic and parasympathetic neurons in the intrinsic cardiac nervous system. Pacing and Clinical Electrophysiology, 37(11), 1462–1469.

    Article  PubMed  Google Scholar 

  18. Lin, J., Scherlag, B. J., Zhou, J., Lu, Z., Patterson, E., Jackman, W. M., et al. (2007). Autonomic mechanism to explain complex fractionated atrial electrograms. Journal of Cardiovascular Electrophysiology, 18(11), 1197–1205.

    Article  PubMed  Google Scholar 

  19. Katritsis, D., Giazitzoglou, E., Sougiannis, D., Voridis, E., & Po, S. S. (2009). Complex fractionated atrial electrograms at anatomic sites of ganglionated plexi in atrial fibrillation. Europace, 11(3), 308–315.

    Article  PubMed  Google Scholar 

  20. Hatem, S., & Sanders, P. (2014). Epicardial adipose tissue and atrial fibrillation. Cardiovascular Research, 102(2), 205–213.

    Article  CAS  PubMed  Google Scholar 

  21. Mazurek, T., Zhang, L., Zalewski, A., Mannion, J. D., Diehl, J. T., Arafat, H., et al. (2003). Human epicardial adipose tissue is a source of inflammatory mediators. Circulation, 108(20), 2460–2466.

    Article  PubMed  Google Scholar 

  22. Greulich, S., Maxhera, B., Vandenplas, G., de Wiza, D. H., Smiris, K., Mueller, H., et al. (2012). Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation, 126(19), 2324–2334.

    Article  CAS  PubMed  Google Scholar 

  23. Venteclef, N., Guglielmi, V., Balse, E., Gaborit, B., Cotillard, A., Atassi, F., et al. (2013). Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal, 36(13), 795–805.

    Article  PubMed  Google Scholar 

  24. Sacks, H. S., Fain, J. N., Holman, B., Cheema, P., Chary, A., Parks, F., et al. (2009). Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. Journal of Clinical Endocrinology and Metabolism, 94(9), 3611–3615.

    Article  CAS  PubMed  Google Scholar 

  25. Higuchi, K., Akkaya, M., Koopmann, M., Blauer, J. J., Burgon, N. S., Damal, K., et al. (2013). The effect of fat pad modification during ablation of atrial fibrillation: late gadolinium enhancement MRI analysis. Pacing and Clinical Electrophysiology, 36(4), 467–476.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Wendy Alexander-Adams and Mr. George Powell for their encouragement and assistance with the reporting of our findings in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Okumura.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding sources

The study was supported by departmental resources only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Okumura, Y., Watanabe, I. et al. Anatomical proximity between ganglionated plexi and epicardial adipose tissue in the left atrium: implication for 3D reconstructed epicardial adipose tissue-based ablation. J Interv Card Electrophysiol 47, 203–212 (2016). https://doi.org/10.1007/s10840-016-0130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-016-0130-9

Keywords

Navigation