Skip to main content
Log in

Long-term outcomes of remote magnetic navigation for ablation of supraventricular tachycardias

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Little is known about the long-term outcomes of catheter ablation of supraventricular tachycardia (SVT) using remote magnetic navigation system (RMN).

Methods

One hundred twenty patients underwent catheter ablation of SVTs with RMN (Niobe, Stereotaxis, USA): atrioventricular nodal re-entrant tachycardia (AVNRT; n = 59), atrioventricular re-entrant tachycardia (AVRT; n = 45), and focal atrial tachycardia (AT, n = 16). The outcome of AVRT with right free wall accessory pathway was compared with those of a group of 26 consecutive patients undergoing manual ablation.

Results

Mean follow-up period was 2.2 ± 1.4 years. Overall arrhythmia-free survival was 86 %; AVRT (77 %), AVNRT (96 %), and focal AT (71 %). After the learning period (initial 50 cases), procedural outcomes had improved for AVRT and AVNRT (91 % in overall group, 90 % in AVRT group, 100 % in AVNRT group, and 68 % in focal AT group). The recurrence-free rate was higher for the free wall accessory pathways than those of the other sites (92 vs. 73 %, log-rank P = 0.06). Furthermore, when it is confined for the right free wall accessory pathway, RMN showed excellent long-term outcome (7/7, 100 %) compared to the results of manual approach (18/26, 69.2 %, log-rank P = 0.07).

Conclusions

RMN showed favorable long-term outcomes for the ablation of SVT. In our experience, RMN-guided ablation may be associated with a higher success rate as compared to manual ablation when treating right-sided free wall pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jackman, W. M., Wang, X. Z., Friday, K. J., Roman, C. A., Moulton, K. P., Beckman, K. J., et al. (1991). Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. New England Journal of Medicine, 324(23), 1605–1611.

    Article  CAS  PubMed  Google Scholar 

  2. Calkins, H., Sousa, J., el-Atassi, R., Rosenheck, S., de Buitleir, M., Kou, W. H., et al. (1991). Diagnosis and cure of the Wolff-Parkinson-White syndrome or paroxysmal supraventricular tachycardias during a single electrophysiologic test. New England Journal of Medicine, 324(23), 1612–1618.

    Article  CAS  PubMed  Google Scholar 

  3. Kuck, K. H., Schlüter, M., Geiger, M., Siebels, J., & Duckeck, W. (1991). Radiofrequency current catheter ablation of accessory atrioventricular pathways. Lancet, 337(8757), 1557–1561.

    Article  CAS  PubMed  Google Scholar 

  4. Jackman, W. M., Beckman, K. J., McClelland, J. H., Wang, X., Friday, K. J., Roman, C. A., et al. (1992). Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction. New England Journal of Medicine, 327(5), 313–318.

    Article  CAS  PubMed  Google Scholar 

  5. Haissaguerre, M., Gaita, F., Fischer, B., Commenges, D., Montserrat, P., d’Ivernois, C., et al. (1992). Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy. Circulation, 85(6), 2162–2175.

    Article  CAS  PubMed  Google Scholar 

  6. Faddis, M. N., Blume, W., Finney, J., Hall, A., Rauch, J., Sell, J., et al. (2002). Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation, 106(23), 2980–2985.

    Article  PubMed  Google Scholar 

  7. Faddis, M. N., Chen, J., Osborn, J., Talcott, M., Cain, M. E., & Lindsay, B. D. (2003). Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. Journal of the American College of Cardiology, 42(11), 1952–1958.

    Article  PubMed  Google Scholar 

  8. Al-Ahmad, A., Grossman, J. D., & Wang, P. J. (2005). Early experience with a computerized robotically controlled catheter system. Journal of Interventional Cardiac Electrophysiology, 12(3), 199–202.

    Article  PubMed  Google Scholar 

  9. Xu, D., Yang, B., Shan, Q., Zou, J., Chen, M., Chen, C., et al. (2009). Initial clinical experience of remote magnetic navigation system for catheter mapping and ablation of supraventricular tachycardias. Journal of Interventional Cardiac Electrophysiology, 25(3), 171–174.

    Article  PubMed  Google Scholar 

  10. Bauernfeind, T., Akca, F., Schwagten, B., de Groot, N., Van Belle, Y., Valk, S., et al. (2011). The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology, 13(7), 1015–1021.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Calkins, H., Yong, P., Miller, J. M., Olshansky, B., Carlson, M., Saul, J. P., et al. (1999). Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trial. The Atakr Multicenter Investigators Group. Circulation, 99(2), 262–270.

    Article  CAS  PubMed  Google Scholar 

  12. Belhassen, B., Rogowski, O., Glick, A., Viskin, S., Ilan, M., Rosso, R., et al. (2007). Radiofrequency ablation of accessory pathways: a 14 year experience at the Tel Aviv Medical Center in 508 patients. Israel Medical Association Journal, 9(4), 265–270.

    PubMed  Google Scholar 

  13. Chen, M. L., Yang, B., Ju, W. Z., Chen, H. W., Chen, C., Hou, X. F., et al. (2010). Right-sided free wall accessory pathway refractory to conventional catheter ablation: lessons from 3-dimensional electroanatomic mapping. Journal of Cardiovascular Electrophysiology, 21(12), 1317–1324.

    Article  PubMed  Google Scholar 

  14. Becker, A. E., Anderson, R. H., Durrer, D., & Wellens, H. J. (1978). The anatomical substrates of Wolff-Parkinson-White syndrome. A clinicopathologic correlation in seven patients. Circulation, 57(5), 870–879.

    Article  CAS  PubMed  Google Scholar 

  15. Becker, A. E., & Anderson, R. H. (1981). The Wolff-Parkinson-White syndrome and its anatomical substrates. Anatomical Record, 201(1), 169–177.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson, R. H., & Ho, S. Y. (1997). Anatomy of the atrioventricular junctions with regard to ventricular preexcitation. Pacing and Clinical Electrophysiology, 20(8 Pt 2), 2072–2076.

    Article  CAS  PubMed  Google Scholar 

  17. Ernst, S., Ouyang, F., Linder, C., Hertting, K., Stahl, F., Chun, J., et al. (2004). Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation, 109(12), 1472–1475.

    Article  PubMed  Google Scholar 

  18. Wood, M. A., Orlov, M., Ramaswamy, K., Haffajee, C., & Ellenbogen, K. (2008). Remote magnetic versus manual catheter navigation for ablation of supraventricular tachycardias: a randomized, multicenter trial. Pacing and Clinical Electrophysiology, 31(10), 1313–1321.

    Article  PubMed  Google Scholar 

  19. Thornton, A. S., Janse, P., Theuns, D. A., Scholten, M. F., & Jordaens, L. J. (2006). Magnetic navigation in AV nodal re-entrant tachycardia study: early results of ablation with one- and three-magnet catheters. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology, 8(4), 225–230.

    Article  CAS  PubMed  Google Scholar 

  20. Davis, D. R., Tang, A. S., Gollob, M. H., Lemery, R., Green, M. S., & Birnie, D. H. (2008). Remote magnetic navigation-assisted catheter ablation enhances catheter stability and ablation success with lower catheter temperatures. Pacing and Clinical Electrophysiology, 31(7), 893–898.

    Article  PubMed  Google Scholar 

  21. Latcu, D. G., Ricard, P., Zarqane, N., Yaici, K., Rinaldi, J. P., Maluski, A., et al. (2009). Robotic magnetic navigation for ablation of human arrhythmias: initial experience. Archives of Cardiovascular Diseases, 102(5), 419–425.

    Article  PubMed  Google Scholar 

  22. Ernst, S., Ouyang, F., Linder, C., Hertting, K., Stahl, F., Chun, J., et al. (2004). Modulation of the slow pathway in the presence of a persistent left superior caval vein using the novel magnetic navigation system Niobe. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology, 6(1), 10–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jeong-Wook Park, Young-Woong Ha, and Bo-Kyung Kim for providing sincere assistance in clinical and electrocardiographic data acquisition and measurement.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Seog Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Oh, YS., Kim, DH. et al. Long-term outcomes of remote magnetic navigation for ablation of supraventricular tachycardias. J Interv Card Electrophysiol 43, 187–192 (2015). https://doi.org/10.1007/s10840-015-9991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-9991-6

Keywords

Navigation