Skip to main content
Log in

Single-ring ablation compared with standard circumferential pulmonary vein isolation using remote magnetic catheter navigation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

In ablation of atrial fibrillation, the single-ring method aims for isolation of the posterior wall of the left atrium (LA) including the pulmonary veins (PVs) but avoiding posterior LA lesions. The aim of this randomized prospective study was to evaluate safety and efficacy of remote magnetic navigation (RMN)-guided single-ring ablation strategy as compared to standard RMN-guided circumferential PV ablation (PVA).

Methods

Eighty consecutive patients undergoing PVA were enrolled prospectively and randomized equally into two study groups. RMN using the Stereotaxis system and open-irrigated 3.5-mm ablation catheters were used with a 3D mapping system in all procedures. Forty patients underwent RMN-guided single-ring ablation, and 40 patients received RMN-guided circumferential PVA.

Results

In the circumferential group, 3.3 ± 1.1 PVs were successfully isolated at the end of the procedure as compared to 3.1 ± 1.3 in the single-ring (box) group (p = 0.38). All patients in the box group required additional posterior lesions in order to achieve electrical isolation of the PVs. Single-ring ablation was associated with longer procedure duration (p = 0.01) and ablation time (p = 0.001). After a single procedure, the proportion of patients free of any atrial tachycardia (AT)/atrial fibrillation (AF) episode at 12-month follow-up was 57 % in the box group and 58 % in the circ group. Using RMN, only minor complications have been observed.

Conclusions

RMN-guided single-ring PVA provides comparable acute and long-term success rates as compared to RMN-guided circumferential PVA but requires additional posterior lesions to achieve PV isolation and increased procedure and ablation time. Procedural complication rates are low when using RMN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., et al. (2006). American College of Cardiology/American Heart Association Task Force on Practice Guidelines; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation, 114, e257–e354.

    Article  PubMed  Google Scholar 

  2. Willems, S., Drewitz, I., Steven, D., Hoffmann, B., Meinertz, T., & Rostock, T. (2010). Interventional therapy of atrial fibrillation: possibilities and limitations. Deutsche Medizinische Wochenschrift, 135, S48–S54.

    Article  PubMed  Google Scholar 

  3. Cappato, R., Calkins, H., Chen, S. A., Davies, W., Iesaka, Y., Kalman, J., et al. (2010). Ablation for human atrial fibrillation. Updated worldwide survey on the methods, efficacy, and safety of catheter. Circulation. Arrhythmia and Electrophysiology, 3, 32–38.

    Article  PubMed  Google Scholar 

  4. Ernst, S. (2009). The future of atrial fibrillation ablation: new technologies and indications: atrial fibrillation. Heart, 95, 158–163.

    Article  PubMed  Google Scholar 

  5. Vollmann, D., Lüthje, L., Seegers, J., Hasenfuss, G., & Zabel, M. (2009). Remote magnetic catheter navigation for cavotricuspid isthmus ablation in patients with common-type atrial flutter. Circulation. Arrhythmia and Electrophysiology, 2, 603–610.

    Article  PubMed  Google Scholar 

  6. Arya, A., Zaker-Shahrak, R., Sommer, P., Bollmann, A., Wetzel, U., Gaspar, T., et al. (2011). Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case–control study. Europace, 13, 45–50.

    Article  PubMed  Google Scholar 

  7. Lüthje, L., Vollmann, D., Seegers, J., Dorenkamp, M., & Sohns, C. (2011). Hasenfuss Get al. Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clinical Research in Cardiology, 100, 1003–1011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pappone, C., Vicedomini, G., Manguso, F., Gugliotta, F., Mazzone, P., Gulletta, S., et al. (2006). Robotic magnetic navigation for atrial fibrillation ablation. Journal of the American College of Cardiology, 47, 1390–1400.

    Article  PubMed  Google Scholar 

  9. Chun, K. R., Wissner, E., Koektuerk, B., Konstantinidou, M., Schmidt, B., Zerm, T., et al. (2010). Remote-controlled magnetic pulmonary vein isolation utilizing a new irrigated tip catheter in patients with atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 3, 458–464.

    Article  PubMed  Google Scholar 

  10. Di Biase, L., Fahmy, T. S., Patel, D., Bai, R., Civello, K., Wazni, O. M., et al. (2007). Remote magnetic navigation: human experience in pulmonary vein ablation. Journal of the American College of Cardiology, 50, 868–874.

    Article  PubMed  Google Scholar 

  11. Katsiyiannis, W., Melby, D., Matelski, J., Ervin, V., Laverence, K., & Gornick, C. (2008). Feasibility and safety of remote-controlled magnetic navigation for ablation of atrial fibrillation. American Journal of Cardiology, 102, 1674–1676.

    Article  PubMed  Google Scholar 

  12. Bauernfeind, T., Akca, F., Schwagten, B., de Groot, N., Van Belle, Y., Valk, S., et al. (2011). The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace, 13, 1015–1021.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thomas, S., Lim, T., McCall, R., Seow, S., & Ross, D. (2007). Electrical isolation of the posterior left atrial wall and pulmonary veins for atrial fibrillation: feasibility of and rationale for a single-ring approach. Heart Rhythm, 4, 722–730.

    Article  PubMed  Google Scholar 

  14. Lim, T. W., Koay, C. H., McCall, R., See, V. A., Ross, D. L., & Thomas, S. P. (2008). Atrial arrhythmias after single-ring isolation of the posterior left atrium and pulmonary veins for atrial fibrillation: mechanisms and management. Circulation. Arrhythmia and Electrophysiology, 1, 120–126.

    Article  PubMed  Google Scholar 

  15. Eitel, C., Hindricks, G., Sommer, P., Gaspar, T., Kircher, S., Wetzel, U., et al. (2010). Circumferential pulmonary vein isolation and linear left atrial ablation as a single-catheter technique to achieve bidirectional conduction block: the pace-and-ablate approach. Heart Rhythm, 7, 157–164.

    Article  PubMed  Google Scholar 

  16. Steven, D., Reddy, V. Y., Inada, K., Roberts-Thomson, K. C., Seiler, J., Stevenson, W. G., et al. (2010). Loss of pace capture on the ablation line: a new marker for complete radiofrequency lesions to achieve pulmonary vein isolation. Heart Rhythm, 7, 323–330.

    Article  PubMed  Google Scholar 

  17. Tamborero, D., Mont, L., Berruezo, A., Matiello, M., Benito, B., Sitges, M., et al. (2009). Left atrial posterior wall isolation does not improve the outcome of circumferential pulmonary vein ablation for atrial fibrillation: a prospective randomized study. Circulation. Arrhythmia and Electrophysiology, 2, 35–40.

    Article  PubMed  Google Scholar 

  18. Sawhney, N., Anousheh, R., Chen, W., & Feld, G. K. (2010). Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxysmal atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 3, 243–248.

    Article  PubMed  Google Scholar 

  19. Chilukuri, K., Scherr, D., Dalal, D., Cheng, A., Spragg, D., Nazarian, S., et al. (2011). Conventional pulmonary vein isolation compared with the “box isolationˮ method: a randomized clinical trial. Journal of Interventional Cardiac Electrophysiology, 32, 137–146.

    Article  PubMed  Google Scholar 

  20. Kuck, K. H., Reddy, V. Y., Schmidt, B., Natale, A., Neuzil, P., Saoudi, N., et al. (2012). A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm, 9, 18–23.

    Article  PubMed  Google Scholar 

  21. Sohns C, Karim R, Harrison J, Arujuna A, Linton N, Sennett R et al. (2013) Quantitative magnetic resonance imaging analysis of the relationship between contact force and left atrial scar formation after catheter ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology.

  22. Ernst, S., Ouyang, F., Löber, F., Antz, M., & Kuck, K. H. (2003). Catheter-induced linear lesions in the left atrium in patients with atrial fibrillation: an electroanatomic study. Journal of the American College of Cardiology, 42, 1271–1282.

    Article  PubMed  Google Scholar 

  23. Kumagai, K., Muraoka, S., Mitsutake, C., Takashima, H., & Nakashima, H. (2007). A new approach for complete isolation of the posterior left atrium including pulmonary veins for atrial fibrillation. Journal of Cardiovascular Electrophysiology, 18, 1047–1052.

    Article  PubMed  Google Scholar 

  24. Lim, T. W., Koay, C. H., See, V. A., McCall, R., Chik, W., Zecchin, R., et al. (2012). Single-ring posterior left atrial (box) isolation results in a different mode of recurrence compared with wide antral pulmonary vein isolation on long-term follow-up: longer atrial fibrillation-free survival time but similar survival time free of any atrial arrhythmia. Circulation. Arrhythmia and Electrophysiology, 5(5), 968–977.

    Article  PubMed  Google Scholar 

  25. Augello, G., Vicedomini, G., Saviano, M., Crisa, S., Mazzone, P., Ornago, O., et al. (2009). Pulmonary vein isolation after circumferential pulmonary vein ablation: comparison between Lasso and three-dimensional electroanatomical assessment of complete electrical disconnection. Heart Rhythm, 6, 1706–1713.

    Article  PubMed  Google Scholar 

  26. Hachiya, H., Hirao, K., Takahashi, A., Nagata, Y., Suzuki, K., Maeda, S., et al. (2007). Clinical implications of reconnection between the left atrium and isolated pulmonary veins provoked by adenosine triphosphate after extensive encircling pulmonary vein isolation. Journal of Cardiovascular Electrophysiology, 18, 392–398.

    Article  PubMed  Google Scholar 

  27. Matsuo, S., Yamane, T., Date, T., Inada, K., Kanzaki, Y., Tokuda, M., et al. (2007). Reduction of AF recurrence after pulmonary vein isolation by eliminating ATP-induced transient venous re-conduction. Journal of Cardiovascular Electrophysiology, 18, 704–708.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Drs. Vollmann and Zabel have received moderate grant support from Stereotaxis. The study was supported by an unrestricted research grant by Stereotaxis, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sohns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohns, C., Bergau, L., Seegers, J. et al. Single-ring ablation compared with standard circumferential pulmonary vein isolation using remote magnetic catheter navigation. J Interv Card Electrophysiol 41, 75–82 (2014). https://doi.org/10.1007/s10840-014-9915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-014-9915-x

Keywords

Navigation