Skip to main content
Log in

Analog Circuits Fault Detection Using Cross-Entropy Approach

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper presents a novel method that can detect component faults in analog circuits. Because the probability density function (PDF) of output voltage (current) is sensitive to the components of the circuit, the cross-entropy between the good circuit and the bad circuit is employed to detect component faults in analog circuits based on the autoregressive (AR) model. In the proposed approach, the value of each component of the circuit undertest (CUT) is varied within its tolerance limit using Monte Carlo simulation. The minimal and maximal bounds of the cross-entropy are found for fault-free circuit. While testing, the cross-entropy is obtained. If cross-entropy lies outside the tolerance limit then the CUT is declared faulty. The effectiveness of the proposed method is demonstrated via the second order Sallenkey bandpass filter circuit and continuous-time low pass state-variable filter circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aminian F, Aminian M, Collins H (2002) Analog fault diagnosis of actual circuits using neural networks. IEEE Trans Instrum Meas 51(3):544–550

    Article  Google Scholar 

  2. Bandler J, Salama A (1985) Fault diagnosis of analog circuits. Proc IEEE 73:1279–1325

    Article  Google Scholar 

  3. Butcher S, Sheppard J (2009) Distributional smoothing in bayesian fault diagnosis. IEEE Trans Instrum Meas 58(2):342–349

    Article  Google Scholar 

  4. Deng Y, Shi Y, Zhang W (2011) An approach to locate parametric faults in nonlinear analog circuits. IEEE Trans Instrum Meas 61(2):358–367

    Article  Google Scholar 

  5. Iuculano G, Nielsen L, Zanobini A, Pellegrini G (2007) The principle of maximum entropy applied in the evaluation of the measurement uncertainty. IEEE Trans Instrum Meas 56(3):717–722

    Article  Google Scholar 

  6. Kay S (1988) Modern spectral estimation: theory and applications, ch 6. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  7. Kay S (1998) Model-based probability density function estimation. IEEE Signal Process Lett 5(12):318–320

    Article  MathSciNet  Google Scholar 

  8. Kaminska B, Arabi K, Bell I, Goteti P, Huertas JL, Kin B, Rueda A, Soma M (1997) Analog and mixed-signal benchmark circuits - first release In: Proc IEEE int test conf (online), pp 183–190

  9. Kavithamani A, Manikandan V, Devarajan N (2012) Fault detection of analog circuits using network parameters. Int J Electron Test Theory Appl, Springer 28:257–261

    Article  Google Scholar 

  10. Kullback S (1968) Information theory and statistics, ch 1. Dover Publications, New York

    Google Scholar 

  11. Papakostas D, Hatzopoulos A (1993) Correlation-based comparison of analog signatures for identification and fault diagnosis. IEEE Trans Instrum Meas 42(4):860–863

    Article  Google Scholar 

  12. Papoulis A (1965) Probability, random variables and stochastic processes, ch 10. McGraw-Hill, New York

    Google Scholar 

  13. Shore J, Johnson R (1980) Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans Inf Theory (IT) 26:26–37

    Article  MathSciNet  MATH  Google Scholar 

  14. Stefan V, Omar E, Colin T, Frank O (2011) Challenges for semiconductor test engineering: a review paper. JETTA Springer 28(3):365–374

    Google Scholar 

  15. Stoica P, Selen R (2004) A review of information criterion rules. IEEE Signal Process Mag 21(4):36–47

    Article  Google Scholar 

  16. Tzannes M, Politis D, Tzannes N (1985) A general method of minimum cross-entropy spectral estimation. IEEE Trans Acoust Speech Signal Process (ASSP) 33(3):748–752

    Article  Google Scholar 

  17. Yang C, Tian S, Long B, Chen F (2011) Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis. IEEE Trans Instrum Meas 60(1):176–185

    Article  Google Scholar 

  18. Yang T, Yi H, Chun C, Guan Q (2008) A novel method for analog fault diagnosis based on neural networks and genetic algorithms. IEEE Trans Instrum Meas 57(11):2631–2639

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongle Xie.

Additional information

Responsible Editor: K. K. Saluja

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Xie, Y. Analog Circuits Fault Detection Using Cross-Entropy Approach. J Electron Test 29, 115–120 (2013). https://doi.org/10.1007/s10836-012-5344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-012-5344-x

Keywords

Navigation