Skip to main content

Advertisement

Log in

Boosting the electrochemical performance of Li-garnet based all-solid-state batteries with Li4Ti5O12 electrode: Routes to cheap and large scale ceramic processing

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

All-solid-state batteries based on fast Li+ conducting solid electrolytes such as Li7La3Zr2O12 (LLZO) give perspective on safe, non-inflammable, and temperature tolerant energy storage. Despite the promise, ceramic processing of whole battery assemblies reaching close to theoretical capacities and finding optimal strategies to process large-scale and low cost battery cells remains a challenge. Here, we tackle these issues and report on a solid-state battery cell composed of Li4Ti5O12 / c-Li6.25Al0.25La3Zr2O12 / metallic Li delivering capacities around 70–75 Ah/kg with reversible cycling at a rate of 8 A/kg (for 2.5–1.0 V, 95 °C). A key aspect towards the increase in capacity and Li+ transfer at the solid electrolyte-electrode interface is found to be the intimate embedding of grains and their connectivity, which can be implemented by the isostatic pressing of cells during their preparation. We suggest that simple adaption of ceramic processing, such as the applied pressure during processing, strongly alters the electrochemical performance by assuring good grain contacts at the electrolyte-electrode interface. Among the garnet-type all-solid-state ceramic battery assemblies in the field, considerably improved capacities and cycling properties are demonstrated for Li4Ti5O12 / c-Li6.25Al0.25La3Zr2O12 / metallic Li pressed cells, giving new perspectives on cheap ceramic processing and up-scalable garnet-based all-solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarascon, J.M., M. Armand, Nature 414, 359–367 (2001)

  2. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11, 19–29 (2011)

    Article  Google Scholar 

  3. C.M. Hayner, X. Zhao, H.H. Kung, Annu. Rev. Chem. Biomol. Eng. 3, 445–471 (2012)

    Article  Google Scholar 

  4. X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500–506 (2009)

    Article  Google Scholar 

  5. Afyon, S., D. Kundu, A.J. Darbandi, H. Hahn, F. Krumeich, R. Nesper, J. Mater. Chem. A 2, 18946–18951 (2014)

  6. S. Afyon, M. Worle, R. Nesper, Angew. Chem. Int. Ed. Eng., 12541–12544 (2013)

  7. Perea, A., K. Zaghib, D. Bélanger, J. Mater. Chem. A 3, 2776–2783 (2015)

  8. Afyon, S., F. Krumeich, C. Mensing, A. Borgschulte, R. Nesper, Sci. Rep. 4, 7113 (2014)

  9. P.L. Moss, R. Fu, G. Au, E.J. Plichta, Y. Xin, J.P. Zheng, J. Power Sources 124, 261–265 (2003)

    Article  Google Scholar 

  10. D. Larcher, J.M. Tarascon, Nat. Chem. 7, 19–29 (2015)

    Article  Google Scholar 

  11. Y. Wang, W.-H. Zhong, ChemElectroChem 2, 22–36 (2015)

    Article  Google Scholar 

  12. Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z.D. Deng, J. Xiao, J. Power Sources 286, 330–345 (2015)

    Article  Google Scholar 

  13. J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, Adv. Energy Mater. 1, 10–33 (2011)

    Article  Google Scholar 

  14. M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp. ACS Nano 9, 10737–10748 (2015)

    Article  Google Scholar 

  15. F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp. Adv. Funct. Mater. 24, 7448–7460 (2014)

    Article  Google Scholar 

  16. Cao, C., Z.-B. Li, X.-L. Wang, X.-B. Zhao, W.-Q. Han, Front. Energy Res. 2, (2014)

  17. P. Knauth, Solid State Ionics 180, 911–916 (2009)

    Article  Google Scholar 

  18. Janek, J., W.G. Zeier, Nat. Energy 1, 16141 (2016)

  19. Murugan, R., V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. Engl. 46, 7778–81 (2007)

  20. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43, 4714–4727 (2014)

    Article  Google Scholar 

  21. M. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida, J. Power Sources 196, 7750–7754 (2011)

    Article  Google Scholar 

  22. Kotobuki, M., H. Munakata, K. Kanamura, Y. Sato, T. Yoshida, J. Electrochem. Soc. 157, A1076 (2010)

  23. C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. 50, 1089–1097 (2011)

    Article  Google Scholar 

  24. E. Rangasamy, J. Wolfenstine, J. Sakamoto. Solid State Ionics 206, 28–32 (2012)

    Article  Google Scholar 

  25. Y. Jin, P.J. McGinn, J. Power Sources 196, 8683–8687 (2011)

    Article  Google Scholar 

  26. W.G. Zeier, Dalton Trans. 43, 16133–16138 (2014)

    Article  Google Scholar 

  27. G.T. Hitz, E.D. Wachsman, V. Thangadurai, J. Electrochem, Soc. 160, A1248–A1255 (2013)

    Google Scholar 

  28. Bernuy-Lopez, C., W. Manalastas, J.M. Lopez del Amo, A. Aguadero, F. Aguesse, J.A. Kilner, Chem. Mater. 26, 3610–3617 (2014)

  29. R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, K. Kanamura, Chem. Mater. 25, 425–430 (2013)

    Article  Google Scholar 

  30. D. Rettenwander, P. Blaha, R. Laskowski, K. Schwarz, P. Bottke, M. Wilkening, C.A. Geiger, G. Amthauer, Chem. Mater. 26, 2617–2623 (2014)

    Article  Google Scholar 

  31. H. Buschmann, J. Dolle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Phys. Chem. Chem. Phys. 13, 19378–19392 (2011)

    Article  Google Scholar 

  32. van den Broek, J., S. Afyon, J.L.M. Rupp, Adv. Energy Mater. 6, 1600736 (2016)

  33. M. Rawlence, I. Garbayo, S. Buecheler, J.L. Rupp. Nano 8, 14746–14753 (2016)

    Google Scholar 

  34. S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, J. Power Sources 202, 332–335 (2012)

    Article  Google Scholar 

  35. S. Ohta, T. Kobayashi, T. Asaoka, J. Power Sources 196, 3342–3345 (2011)

    Article  Google Scholar 

  36. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, J. Power Sources 238, 53–56 (2013)

    Article  Google Scholar 

  37. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, T. Asaoka, J. Power Sources 265, 40–44 (2014)

    Article  Google Scholar 

  38. T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. Iriyama, J. Power Sources 260, 292–298 (2014)

    Article  Google Scholar 

  39. C. Hansel, S. Afyon, J.L. Rupp. Nano 8, 18412–18420 (2016)

    Google Scholar 

  40. Afyon, S., F. Krumeich, J.L.M. Rupp, J. Mater. Chem. A. 3, 18636–18648 (2015)

  41. Nowack, L.V., O. Waser, O. Yarema, V. Wood, RSC Adv. 3, 15618 (2013)

Download references

Acknowledgements

The authors thank Competence Center Energy and Mobility (CCEM) and Alstom for funding of the projects: Proposal 911 “All Solid State Li-Ion Batteries based on New Ceramic Li-Ion Electrolytes” and SP-ESC-A 03-14, ETH Zürich Foundation “All Solid State Li+ Batteries with high Thermal Operation Window”, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer L. M. Rupp or Semih Afyon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Broek, J., Rupp, J.L.M. & Afyon, S. Boosting the electrochemical performance of Li-garnet based all-solid-state batteries with Li4Ti5O12 electrode: Routes to cheap and large scale ceramic processing. J Electroceram 38, 182–188 (2017). https://doi.org/10.1007/s10832-017-0079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0079-9

Keywords

Navigation