Skip to main content

Advertisement

Log in

Electrical and mechanical properties of MgO added 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–0.5BCT) composite ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

MgO (0–2.0 vol%) added Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) ceramics have been prepared by the conventional solid-state reaction method. The effects of MgO powder on the phase formation, densification, dielectric, piezoelectric and mechanical properties (flexural strength, hardness) of the BZT-0.5BCT ceramics have been studied systematically. The synthesized powder could be densified to 97 % of true density at a temperature of 1350 °C. The MgO addition also provided materials with better mechanical properties. The most interesting aspect of MgO added samples is their relative permittivity vs. temperature response. MgO additions effectively suppress the relative permittivity around phase transition temperature. The aging rate of d33 observed for BZT-0.5BCT is 14 %/decade. MgO addition reduces the ageing rate and for 1 vol% MgO added, BZT-0.5BCT shows aging rate of 3 %/decade. BZT-0.5BCT/MgO ceramics possesses good mechanical properties viz., flexural strength 93 MPa, which is almost 25 % higher than that of monolithic BZT-0.5BCT (73 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, (1971).

  2. K. Uchino, Ferroelectric Devices (Marcel Dekker Inc, New York, 2000)

    Google Scholar 

  3. A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, Applications, (Chapman & Hall, London, 1990)

    Google Scholar 

  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  5. M. E. Rogers, C. M. Fancher, J. E. Blendell, Journal of Applied Physics 112, 052014 (2012)

    Article  Google Scholar 

  6. D. Y. Wang, N. Y. Chan, S. Li, S. H. Choy, H. Y. Tian, H. L. W. Chan, Applied Physics Letters 97, 212901 (2010)

    Article  Google Scholar 

  7. K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang, K. J. Lee, Nano Letters 10, 4939 (2010)

    Article  Google Scholar 

  8. Y. C. Yang, C. Song, X. H. Wang, F. Zeng, F. Pan, Applied Physics Letters 92, 012907 (2008)

    Article  Google Scholar 

  9. D. M. Lin, D. Q. Xiao, J. G. Zhu, P. Yu, Applied Physics Letters 88, 062901 (2006)

    Article  Google Scholar 

  10. W. F. Liu, X. B. Ren, Physical Review Letters 10, 3257602 (2009)

    Google Scholar 

  11. W. Li, Z. Xun, R. Chu, P. Fu, G. Zang, Physica B 405, 4513 (2010)

    Article  Google Scholar 

  12. P. Wang, Y. Li, and Y. Lu, Journal of the European Ceramic Society, 31, 2005, (2011).

  13. F. Benabdallah, A. Simon, H. Khemakhem, C. Elissalde, M. Maglione, Journal of Applied Physics 109, 124116 (2011)

    Article  Google Scholar 

  14. A. Kaushal, S. M. Olhero, B. Singh, R. Zamiri, V. Saravanan and J. M. F. Ferreira, RSC Adv., 4, 26993, (2014),

  15. A. Srinivasa, R. V. Krishnaiaha, V. L. Niranjania, S. V. Kamata, T. Karthik, S. Asthana, Ceramics International 41, 1980–1985 (2015)

    Article  Google Scholar 

  16. S. Jiansirisomboon, A. Watcharapasorn, Current Applied Physics 8, 48 (2008)

    Article  Google Scholar 

  17. H. J. Hwang, M. Toriyama, T. Sekino, K. Niihara, J. Euro, Ceram. Soc 18, 2193 (1998)

    Article  Google Scholar 

  18. H. Hyuga, Y. Hayashi, T. Sekino, K. Niihara, Nanostructured Materials 9, 547 (1997)

    Article  Google Scholar 

  19. C. Y. Chen, W. H. Tuan, Journal of Materials Science Letters 18, 353 (1999)

    Article  Google Scholar 

  20. K. Tajima, H. J. Hwang, M. Sandoand, K. Niihara, Journal of the European Ceramic Society 19, 1179 (1999)

    Article  Google Scholar 

  21. S. Jiansirisomboon, M. Promsawat, O. Namsar, A. Watcharapasorn, Materials Chemistry and Physics 117, 80 (2009)

    Article  Google Scholar 

  22. T. Zeng, X. Dong, H. Yang, C. Mao, H. Chen, Scripta Mater 55, 923 (2006)

    Article  Google Scholar 

  23. P. Xiang, X. Dong, H. Chen, Z. Zhang, J. Guo, Ceram. Inter 29, 499–503 (2003)

    Article  Google Scholar 

  24. P. Adhikari, R. Mazumder, G. K. Sahoo, Ferroelectrics 490, 60–69 (2016)

    Article  Google Scholar 

  25. P. Ren, H. Fan, X. Wang, X. Tan, Materials Research Bulletin 46, 2308 (2011)

    Article  Google Scholar 

  26. T. Nagai, K. Iijim, H. Hwang, M. Sando, T. Sekino and K. Niihara, Journal of the American Ceramic Society, 83 (1), 107, (2000).

  27. S. Yoon, J. Lee, D. Kim and N. M. Hwang, Journal of the American Ceramic Society, 86 (1), 88, (2003).

  28. W. C. Vittayakorn, D. Bunjong, R. Muanghlua, N. Vittayakorn, J. Ceram, Process. Res 12(5), 493–495 (2011)

    Google Scholar 

  29. ASTM C1161–90, Standard test method for flexural strength of advanced ceramics at ambient temperature, Annual Book of ASTM Standards, Vol. 15.01. ASTM, pp. 327–333 (1991).

  30. Y. Sakabe, N. Wada, T. Hiramatsu, T. Tonogaki, Japanese Journal of Applied Physics 41, 6922 (2002)

    Article  Google Scholar 

  31. J. S. Park, Y. H. Han, Journal of the European Ceramic Society 27, 1077 (2007)

    Article  Google Scholar 

  32. K. Uchino, E. Sadanaga, T. Hirose, J. Am, Ceram.Soc 72(8), 1555–1989

  33. J. R. Scholz “Aging Rates in PZT Ferroelectrics with Mixed Acceptor-Donor Dopants” MS thesis, Pennsylvania State University, (2009).

  34. S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, L. Li, Curr. App. Phys 11, S120 (2011)

    Article  Google Scholar 

  35. S. J. Jeong, J. B. Kim, Integrated Ferroelectrics 90, 12 (2007)

    Article  Google Scholar 

  36. K. L. Kendig, D. B. Miracle, Acta Materialia 50, 4165 (2002)

    Article  Google Scholar 

  37. K. Niihara, Journal of the Ceramic Society of Japan 99, 974 (1991)

    Article  Google Scholar 

  38. Y. Wu, T. Feng, J. Alloys, Comp 491, 452 (2010)

    Article  Google Scholar 

  39. R. A. Pferner, G. Thurn, F. Aldinger, Materials Chemistry and Physics 61, 24–30 (1999)

    Article  Google Scholar 

  40. P. K. Sharma, Z. Ounaies, V. V. Varadan, V. K. Varadan, Smart Materials and Structures 10, 878–883 (2001)

    Article  Google Scholar 

  41. M. W. Hooker, NASA / CR- 1998–208708

  42. http://www.morgantechnicalceramics.com/products/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mazumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, P., Mazumder, R. & Abhinay, S. Electrical and mechanical properties of MgO added 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–0.5BCT) composite ceramics. J Electroceram 37, 127–136 (2016). https://doi.org/10.1007/s10832-016-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0049-7

Keywords

Navigation