Skip to main content

Advertisement

Log in

Effect of Fe – substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The structural, microstructural, optical, electrical and dielectrical properties of nanocrystalline Fe substituted BaTiO3 synthesized by sol-gel auto combustion have been investigated. The X-ray diffraction (XRD) analysis revealed the existence of the tetragonal phase for lower Fe content (x = 0.0–0.3) whereas, coexistence of the tetragonal and hexagonal structure of higher Fe content (x = 0.4 and 0.5). The lattice constant (a and c) and unit cell volume (V) increases with increase in Fe content; and an average crystallite size (t) was recorded in the range of ~14–20 nm. The surface morphology as examined using field emission scanning electron microscopy (FESEM) and the compositional stoichiometry was confirmed by energy dispersive spectrum (EDS) analysis. The UV-Vis spectra showed that the band gap energy sensitively depends on the Fe concentration x. DC-electrical conductivity (σ) was recorded in the temperature range of 333–714 K which was found to be increases with increasing temperature and Fe concentration; indicating that an electrical conduction was a thermally activated process. The type of temperature dependent DC conductivity indicates that the electrical conduction in the material is a thermally activated process. The dependencies of the conductivity contributions were predicted from the simple defect model presented, in which oxygen vacancies charge compensate Fe substitution of Ti. Dielectrical property was measured as a function of frequency in the range 50 Hz - 5 MHz at room temperature which was found to be higher at lower frequencies. Dielectric constant (ε’) and loss tangent (tan δ) shows strong compositional as well as frequency dependences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. K. Su Sheng, Ong. Microelectron Eng 87, 1932–1934 (2010)

    Article  Google Scholar 

  2. K. Ecija, A. Vidal, A. Larrañaga, L. Martínez-Amesti, M. I. Ortega-San-Martín, Arriortua. Solid State Ionics 235, 14–21 (2013)

    Article  Google Scholar 

  3. D. Sette, V. Kovacova, E. Defay, Thin Solid Films 589, 111–114 (2015)

    Article  Google Scholar 

  4. X. Jin, D. Sun, M. Zhang, Y. Zhu, J. Qian, J Electroceram 22, 285–290 (2009)

    Article  Google Scholar 

  5. J. S. Capurso, A. A. Bologna, W. A. Schulze, J Am Ceram Soc 78, 2476–2480 (1995)

    Article  Google Scholar 

  6. J. Qi, Z. Gui, Y. Wang, Q. Zhu, Y. Wu, L. Li, Ceram Int 28, 141–143 (2002)

    Article  Google Scholar 

  7. M. Bibes, A. Barthelemy, Nat Mater 7, 425 (2008)

    Article  Google Scholar 

  8. G. Catalan, J. F. Scott, Adv Mater 21, 2463 (2009)

    Article  Google Scholar 

  9. F. Lin, D. Jiang, X. Ma, W. Shi, J Magn Magn Mater 320, 691–694 (2008)

    Article  Google Scholar 

  10. Y. H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang, C. W. Nan, Appl Phys Lett 92, 112501 (2008)

    Article  Google Scholar 

  11. Y. W. Cho, T. S. Hyun, S. K. Choi, J Electroceram 13, 251–255 (2004)

    Article  Google Scholar 

  12. G. B. Li, S. X. Liu, F. H. Liao, S. J. Tian, X. P. Jing, J. H. Lin, Y. Uesu, K. Kohn, K. Saitoh, M. Terauchi, N. Di, Z. J. Cheng, Sol State Chem 177, 1695–1703 (2004)

    Article  Google Scholar 

  13. J. Xu, J. Zhai, X. J. Yao, J. Alloys, Compd 467, 567–571 (2009)

    Article  Google Scholar 

  14. S. Sen, R. N. Choudhary, P. Pramanik, Mater Lett 58, 3486–3490 (2004)

    Article  Google Scholar 

  15. Z. Wang, J. Hu, M. Yu, Nanotechnology 18, 235203–235204 (2007)

    Article  Google Scholar 

  16. J. Spanier, A. Kolpak, J. Urban, I. Grinberg, L. Ouyang, W. Yun, A. Rappe, H. Park, Nano Lett 6, 735–739 (2006)

    Article  Google Scholar 

  17. F. Lin, D. Jiang, X. Ma, W. Shi, J Magn Magn Mater 320, 691–694 (2008)

    Article  Google Scholar 

  18. Zhong, W., David Vanderbilt, K. M. Rabe, Physical Review Letters 73.13 (1994) 1861.

  19. F. Lin, D. Jiang, X. Ma, W. Shi, Physica B 403(17), 2525–2529 (2008)

    Article  Google Scholar 

  20. A. Von Hippel, Rev Mod Phys 22(3), 221 (1950)

    Article  Google Scholar 

  21. P. T. Phong, B. T. Huy, Y.-I. Lee, I.-J. Lee, J Alloys Compd 583, 237 (2014)

    Article  Google Scholar 

  22. J. Dickson, G. L. Katz, W. Roland, J Am Chem Soc 83(14), 3026–3029 (1961)

    Article  Google Scholar 

  23. B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du, Z.G. Liu, Phys Rev B 79 (2009) 134109.

  24. Ha M. Nguyen, N.V. Dang, P.-Y. Chuang, T.D. Thanh, C.-W. Hu, T.-Y. Chen, V.D. Lam, C.-H. Lee, L.V. Hong, Appl. Phys. Lett. 99 (2011) 202501–202503.

  25. D. Ginting, S. C. Yu, T. L. Phan, N. V. Dang, T. D. Thanh, V. D. Lam, J. Korean Phys, Soc 62, 2128–2132 (2013)

    Google Scholar 

  26. L. Testino, L. Mitoseriu, V. Buscaglia, I. Pallecchi, A. S. Albuquerque, V. Calzona, D. A. Marre, A. S. Siri, P. Nanni, J Eur Ceram Soc 231, 323–327 (2006)

    Google Scholar 

  27. G. P. Duong, R. Groessinger, R. S. Turtelli, J Magn Magn Mater 310, 361–365 (2007)

    Article  Google Scholar 

  28. M. B. F. van Raap, F. H. Sanchez, C. E. R. Torres, L. Casas, A. Roig, E. J. Molins, Phys: Condens Matter 17, 6519–6531 (2005)

    Google Scholar 

  29. P. Moriarty, Rep Prog Phys 64, 297–381 (2001)

    Article  Google Scholar 

  30. A. S. Edelstein, R. C. Cammaratra (eds.), Nanomaterials: synthesis, properties and applications (CRC Press, 1998)

  31. K. Samuvel, K. Ramachandran, Spectrochim Acta A Mol Biomol Spectrosc 136, 437–442 (2015)

    Article  Google Scholar 

  32. F. Lin, W. Shi, Physica B 448, 451–456 (2012)

    Article  Google Scholar 

  33. L. G. Hubert-Pfalzgraf, New J Chem 11, 663–675 (1987)

    Google Scholar 

  34. J. Livage, M. Henry, C. Sanchez, Progress in Solid State Chemistry 18, 259–342 (1988)

    Article  Google Scholar 

  35. L. Springer, M.F. Yan in “Ultrastructure Processing of Ceramics, Glasses and Composites”, ed. L. L. Hench, D. R. Ulrich, Wiley, New York, (1984) p.464.

  36. D. Bipul, S. Ravi, A. Perumal, D. Pamu, Physica B 448, 204–206 (2014)

    Article  Google Scholar 

  37. N. V. Dang, N. T. Dung, P. T. Phong, I.-J. Lee, Physica B 457, 103–107 (2015)

    Article  Google Scholar 

  38. R. Yimnirun, J. Tangsritrakul, S. Rujirawat, S. Limpijumnong, Ferroelectrics 381, 130 (2009)

    Article  Google Scholar 

  39. D. Marrocchelli, N. H. Perry, R. Sean, Bishop, Physical Chemistry Chemical Physics 17(15), 10028–10039 (2015)

    Article  Google Scholar 

  40. S. D. Birajdar, V. R. Bhagwat, A. B. Shinde, K. M. Jadhav, Mater Sci Semicond Process 41, 441–449 (2016)

    Article  Google Scholar 

  41. R. Pornprasertsuk, C. Yuwapttanawong, S. Permkittikul, T. Tungtidtham, International Journal of Precision Engineering and Manufacturing Vol. 13 10 (2012) 1813–1819.

  42. S. Yamanaka, K. Kurosaki, T. Maekawa, T. Matsuda, S.-i. Kobayashi, M. Uno, J Nucl Mater 344, 61–66 (2005)

    Article  Google Scholar 

  43. R. D. Shannon, Acta Crystallogr A32, 751–767 (1976)

    Article  Google Scholar 

  44. V. Pillai, D. O. Shah, J Magn Magn Mater 163, 243–248 (1996)

    Article  Google Scholar 

  45. Ashiri R, Nemati A, Ghamsari M.S, Aadelkhani H.J. Non-Cryst Solids, 355 (2009) 2480–2484.

  46. Benramache, S., Arif, A., Belahssen, O., Guettaf, A. 3(1) (2013) 1–6.

  47. Y.-C. Lee, Y. s. Chang, L. G. Teoh, L. H. Yi, Y. C. Shen, J sol-gel Sci Technol 56(1), 33–38 (2010)

    Article  Google Scholar 

  48. J. Yu, J. Chu, M. Zhang, Applied Physics A 74(5), 645–647 (2002)

    Article  Google Scholar 

  49. M. Kaczmarek, R. W. Eason, I. Mnushkina, Applied Physics B 68(5), 813–817 (1999)

    Article  Google Scholar 

  50. N. V. Dang, N. T. Dung, P. T. Phong, I.-J. Lee, Physica B 457, 103–107 (2015)

    Article  Google Scholar 

  51. W. Heywang, Semiconducting barium titanate. J Mater Sci 6(9), 1214–1224 (1971)

    Article  Google Scholar 

  52. F. A. Kroger, H. J. Vink, Solid State Phys 3, 307–435 (1956)

    Google Scholar 

  53. Kroger, F. A. and Vink, H. J., in Solid State Physics, Vol. 3, (cd. F. Seitzand D. Tumbull). Academic Press, NewYork, (1956) 307.

  54. Bieger, T., Maier, J. and Waser, R., Proc. 7th Cimtec Conf (cd. P. Vincenzini) E.lsevier Sci. Publishers B.V., Montecatini, Italy, (1991) 623

  55. T. Bieger, J. Maier, R. Waser, Solid State Ionics 578, 53–56 (1992)

    Google Scholar 

  56. Abbate, M., de Groot, F. M. F., Fuggle, J. C., Fujimori, A., Strebd, O., Lopez, F., Domke, M., Kaindl, G., Sawatzky, G. A.,Takano, M.,Takeda, Y., Eisaki, H. and Uchida, S., Phys. Rev. B., 1992–114, 6, 4511

  57. M. Willander, O. Nur, M. Q. Israr, A. B. Abou Hamad, F. G. El Desouky, M. A. Salem, I. K. Battisha, J Crystallization Process Technol 2, 1–11 (2012)

    Article  Google Scholar 

  58. N. Moso, H. Beltran, E. Cordoncillo, P. Escribano, A. R. West, J Mater Chem 16, 1626–1633 (2006)

    Article  Google Scholar 

  59. C. Sameera, G. S. Devi, G. Kumar, Prasad, Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy 136, 366–372 (2015)

    Article  Google Scholar 

  60. V. Vinayak, P. P. Khirade, S. D. Birajdar, R. C. Alange, K. M. Jadhav, J. Supercond, Nov Magn 28, 3351–3356 (2015)

    Article  Google Scholar 

  61. Z. Yu, Chen Ang. J Appl Phys 91(2), 794–797 (2002)

    Article  Google Scholar 

  62. R. V. Mangalaraja, P. Manohar, F. D. Gnanam, J. Mater, Sci 39, 2037 (2004)

    Google Scholar 

  63. Z. Guo, L. Pan, C. bi, H. Qiu, X. Zhao, L. Yang, M.Y.Rafique, J Magn Magn Mater 325, 24–28 (2013)

    Article  Google Scholar 

  64. M. A. Pena, J. L. G. Fierro, Chem Rev 101, 1981–2017 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The author Mr. Pankaj P. Khirade is very much thankful to Department of Physics, IIT Mumbai for providing X-ray diffraction (XRD) and North Maharashtra University, Jalgaon for scanning electron microscopy (FESEM) characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj P. Khirade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khirade, P.P., Birajdar, S.D., Raut, A.V. et al. Effect of Fe – substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method. J Electroceram 37, 110–120 (2016). https://doi.org/10.1007/s10832-016-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0044-z

Keywords

Navigation