Skip to main content
Log in

Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

low-κ dielectric LTCC was developed, to realize successful co-firing with NiCuZn ferrite tapes. A critical high-temperature process in the production of highly integrated LTCC modules is the migration of silver from inner conductors into the LTCC glass phase. Intensive silver migration causes strong deformation of LTCC multilayers during firing in air. Silver migration into the LTCC glass phase depends on oxygen content of the sintering atmosphere and can be minimized by sintering in nitrogen atmosphere. However, partial decomposition of NiCuZn-ferrite and formation of cuprite was observed during sintering in nitrogen and, consequently, the permeability of the ferrite decreases. As shown by a combined XRD/thermogravimetric study the co-firing of LTCC modules with silver metallization and integrated ferrite layer demands precise adjustment of oxygen partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Imanaka, Multilayered low temperature Co-fired ceramics (LTCC) technology, (Springer Science + Business Media, Inc., 2005)

  2. L. J. Golonka, Bull. Pol. Acad. Sci. 54(2), 221 (2006)

    Google Scholar 

  3. B. Brandt, M. Gemeinert, T. Rabe, J. Bolte, Int. J. Appl. Ceram. Technol. 10(3), 413 (2013)

    Article  Google Scholar 

  4. A. Heunisch, B. Schulz, T. Rabe, IMAPS/ACerS 8th Int. CICMT Conference (2012), Proceedings CD-ROM, 000097–000102.

  5. J.-H. Jean, C.-H. Lee, Jpn. J. Appl. Phys. 38, 3508 (1999)

    Article  Google Scholar 

  6. J.-H. Jean, C.-H. Lee, J. Am. Ceram. Soc. 82, 343 (1999)

    Article  Google Scholar 

  7. J. Jeong, Y. H. Han, B. C. Moon, J. Mater, Sci. - Materials in Electronics 15, 303 (2004)

    Article  Google Scholar 

  8. J. Mürbe, J. Töpfer, J. Electroceramics 15, 215 (2005)

    Article  Google Scholar 

  9. J. Mürbe, J. Töpfer, J. Electroceramics 16, 199 (2006)

    Article  Google Scholar 

  10. J. Mürbe, J. Töpfer, J. Magn. Magn. Mater. 324, 578 (2012)

    Article  Google Scholar 

  11. R. Matz, D. Götsch, R. Karmazin, R. Männer, B. Siessegger, J. Electroceram, 27 [1–3], 209 (2009)

    Google Scholar 

  12. H. Naghib-zadeh, R. Karmazin, T. Rabe, J. Electroceram. 31(1–2), 88 (2013)

    Article  Google Scholar 

  13. K. Ahadi, S. M. Mahdavi, A. Nemati, M. Kianinia, J. Mater. Sci. Mater. Electron. 22, 815 (2011)

    Article  Google Scholar 

  14. E. R. Twiname, G. L. Messing, C. A. Randall, Int. J. Microcircuits Electr. Packag. 24, 105 (2001)

    Google Scholar 

  15. T. Rabe, M. Eberstein, W. A. Schiller, Ceram. Trans. 198, 173 (2007)

    Google Scholar 

  16. C. Glitzky, T. Rabe, M. Eberstein, W. A. Schiller, J. Töpfer, S. Barth, A. Kipka, J. Microelectron. Electron. Packag. 6(1), 1 (2009)

    Article  Google Scholar 

  17. T. Rabe, H. Naghib-zadeh, C. Glitzky, J. Töpfer, Int. J. Appl. Ceram. Technol. 9(1), 18 (2012)

    Article  Google Scholar 

  18. Y.-H. Lee, W.-C. Kuan, W.-H. Tuan, J. Eur. Ceram. Soc. 33, 95 (2013)

    Article  Google Scholar 

  19. B. Brandt, H. Naghib-zadeh, T. Rabe, J. Am. Ceram. Soc. 96(3), 726 (2013)

    Article  Google Scholar 

  20. K. B. Shim, N. T. Cho, S. W. Lee, J. Mater. Sci. 35, 813 (2000)

    Article  Google Scholar 

  21. J.-H. Jean, C.-R. Chang, J. Am. Ceram. Soc. 87(7), 1244 (2004)

    Article  Google Scholar 

  22. D. Tramosljika, J. Schaefer, G. Rixecker, F. Aldinger, Proceedings of conference on ceramic interconnect and ceramic microsystems technologies (CICMT), Baltimore (2005)

  23. A. Roesler, J. Schare, C. Hetler, D. Abel, G. Slama, D. Schofield, Proceedings 60th Electronic Components and Technology Conference (2010) pp. 720–726

  24. C.-S. Hsi, Y.-R. Chen, H.-I. Hsiang, J. Mater. Sci. 46, 4695 (2011)

    Article  Google Scholar 

  25. M. Eberstein, M. Wenzel, C. Feller, T. Seuthe, F. Gora, Proceedings 8th international CICMT conference and exhibition, Erfurt (2012), 000018–000024

  26. M. Eberstein, T. Rabe, W. A. Schiller, Int. J. Appl. Ceram. Technol. 3(6), 428 (2006)

    Article  Google Scholar 

  27. T. Rabe, C. Glitzky, H. Naghib-zadeh, G. Oder, M. Eberstein, J. Töpfer, Proceedings 5th international conference and exhibition on ceramic interconnect and ceramic microsystem technology (CICMT), Denver (2009), 000085–000093

  28. R. Dieckmann, Phys. Chem. 86, 112 (1982)

    Google Scholar 

  29. J. Töpfer, R. Dieckmann, J. Eur. Ceram. Soc. 24, 603 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research within the framework of research project “ALFERMO” (FKZ 13 N10666). The authors thank B. Capraro and S. Barth (Fraunhofer IKTS, Hermsdorf, Germany) for casting the ferrite tapes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghib zadeh, H., Oder, G., Hesse, J. et al. Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers. J Electroceram 37, 100–109 (2016). https://doi.org/10.1007/s10832-016-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0043-0

Keywords

Navigation