Skip to main content
Log in

Structural evolution and dopant occupancy preference of yttrium-doped potassium sodium niobate thin films

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Sodium potassium niobate (KNN) is the most promising candidate for lead-free piezoelectric material, owing to its high Curie temperature and piezoelectric coefficients among the non-lead piezoelectric. Numerous studies have been carried out to enhance piezoelectric properties of KNN through composition design. This research studied the effects of yttrium concentrations and lattice site occupancy preference in KNN films. For this research, the yttrium-doped KNN thin films (mol% = 0, 0.1, 0.3, 0.5, 0.7 and 0.9) were fabricated using the sol-gel spin coating technique and had revealed the orthorhombic perovskite structures. Based on the replacement of Y3+ ions for K+/ Na+ ions, it was found that the films doped with 0.1 to 0.5 mol% of yttrium had less lattice strain, while films with more than 0.5 mol% of Y3+ ions had increased strain due to the tendency of Y3+ to occupy the B-site in the perovskite lattice. Furthermore, by analysing the vibrational attributes of octahedron bonding, the dopant occupancy at A-site and B-site lattices could be identified. O-Nb-O bonding was asymmetric and became distorted due to the B-site occupancy of yttrium dopants at high dopant concentrations of >0.5 mol%. Extra conduction electrons had resulted in better resistivity of 2.153× 106 Ω at 0.5 mol%, while higher resistivity was recorded for films prepared with higher concentration of more than 0.5 mol%. The introduction of Y3+ improved the grain distribution of KNN structure. Further investigations indicated that yttrium enhances the surface smoothness of the films. However, at high concentrations (0.9 mol%), the yttrium increases the roughness of the surface. Within the studied range of Y3+ , the film with 0.5 mol% Y3+ represented a relatively desirable improvement in dielectric loss, tan δ and quality factor, Qm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 43, 7159 (2004)

    Article  Google Scholar 

  2. R. Rani, Mater. Sci. Appl. 02, 1416 (2011)

    Google Scholar 

  3. M. H. Maziati Akmal, A. R. M. Warikh, U. A. A. Azlan, Ceramics-Silikáty 59, 158 (2015)

    Google Scholar 

  4. D. Fasquelle, M. Mascot, N. Sama, D. Remiens, J. Carru, Sensors Actuators A 229, 30 (2015)

    Article  Google Scholar 

  5. Y. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129, 279 (2004)

    Article  Google Scholar 

  6. H. Bruncková, Ľ. Medvecký, P. Hvizdoš, J. Ďurišin, Surf. Interface Anal. 47, 1063 (2015)

    Article  Google Scholar 

  7. X. Pang, J. Qiu, K. Zhu, H. Zheng, Ferroelectrics 432, 73 (2012)

    Article  Google Scholar 

  8. Y. Nakashima, W. Sakamoto, T. Yogo, J. Eur. Ceram. Soc. 31, 2497 (2011)

    Article  Google Scholar 

  9. S. Qian, K. Zhu, X. Pang, J. Liu, J. Qiu, J. Du, Ceram. Int. 40, 4389 (2014)

    Article  Google Scholar 

  10. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, W. Jo, J. Mater. 1, 8 (2016)

    Google Scholar 

  11. J.-F. Li, Y. Zhen, B.-P. Zhang, L.-M. Zhang, K. Wang, Ceram. Int. 4, 783 (2008)

    Article  Google Scholar 

  12. J.-H. Kim, Y.-M. Kang, M.-S. Byun, K.-T. Hwang, Thin Solid Films 520, 1015 (2011)

    Article  Google Scholar 

  13. M. H. Maziati Akmal, U. A. A. Azlan, A. R. M. Warikh, A. Nurul Azuwa, Jurnal Teknologi 77, 67 (2015)

    Google Scholar 

  14. H. Xie, P.-C. Su, Thin Solid Films 584, 116 (2014)

    Article  Google Scholar 

  15. W. X. Cheng, A. L. Ding, P. Qiu, X. He, X. Zheng, Integr. Ferroelectr. 75, 173 (2005)

    Article  Google Scholar 

  16. R. Shannon, Acta Crystallogr. Sect. A 32, 19 (1976)

    Article  Google Scholar 

  17. D. Shan, Y. F. Qu, J. J. Song, Solid State Commun. 141, 65 (2007)

    Article  Google Scholar 

  18. K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, Solid State Ionics 108, 129 (1998)

    Article  Google Scholar 

  19. P. Yongping, R. Huijun, C. Wei, C. Shoutian, J. Rare Earths 22, 20 (2005)

    Google Scholar 

  20. Q. Sun, Q. Gu, K. Zhu, J. Wang, J. Qiu, Ceram. Int. 2, 3170 (2016)

    Article  Google Scholar 

  21. K. Wang, J.-F. Li, J. Adv. Ceram. 1, 24 (2012)

    Article  Google Scholar 

  22. G. H. Khorrami, A. Kompany, A. Khorsand Zak, Adv. Powder Technol. 26, 113 (2015)

    Article  Google Scholar 

  23. Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, S. Liu, Z. Liu, M. Li, G. Wang, C. Shao, Y. Liu, G. Zou, J. Phys. D. Appl. Phys. 40, 5592 (2007)

    Article  Google Scholar 

  24. Y. Ding, Y. Li, W. Deng, W. Huang, C. Wang, J. Rare Earths 31, 1017 (2013)

    Article  Google Scholar 

  25. G. H. Khorrami, A. Khorsand Zak, A. Kompany, R. Yousefi, Ceram. Int. 38, 5683 (2012)

    Article  Google Scholar 

  26. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    Article  Google Scholar 

  27. M. T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000)

    Article  Google Scholar 

  28. X. Vendrell, J. E. García, X. Bril, D. A. Ochoa, L. Mestres, G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015)

    Article  Google Scholar 

  29. Z. Wang, Y. Zhuo, D. Xiao, W. Wu, C. Zhang, X. Huang, J. Zhu, Curr. Appl. Phys. 11, S143 (2011)

    Article  Google Scholar 

  30. M. Raghavender, G. S. Kumar, G. Prasad, J. Phys. Chem. Solids 67, 1803 (2006)

    Article  Google Scholar 

  31. F. Rubio-Marcos, J. J. Romero, M. S. Martín-Gonzalez, J. F. Fernández, J. Eur. Ceram. Soc. 30, 2763 (2010)

    Article  Google Scholar 

  32. P. A. Jha, A. K. Jha, Curr. Appl. Phys., 13,1413 (2013)

  33. N. Marandian Hagh, K. Kerman, B. Jadidian, A. Safari, J. Eur. Ceram. Soc. 29, 2329 (2009)

    Article  Google Scholar 

  34. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2329 (2015)

    Google Scholar 

  35. D. Gao, K. W. Kwok, D. Lin, H. L. W. Chan, J. Phys. D. Appl. Phys. 42, 035411 (2009)

    Article  Google Scholar 

  36. B. Xu, L. Jiang, F. Jiao, H. Cui, Y. Xu, R. Yang, Yu, X. Cheng, Trans. Nonferrous Metals Soc. China 22, s110 (2012)

    Article  Google Scholar 

  37. Q. Deng, J. Zhang, T. Huang, L. Xu, K. Jiang, Y. Li, Z. Hu, J. Chu, J. Mater. Chem. C 3, 8225 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the assistance and funding provided by Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education, Malaysia for this research work (FRGS/1/2014/TK04/FTK/02/F00207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. M. Warikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmal, M.H.M., Warikh, A.R.M., Azlan, U.A.A. et al. Structural evolution and dopant occupancy preference of yttrium-doped potassium sodium niobate thin films. J Electroceram 37, 50–57 (2016). https://doi.org/10.1007/s10832-016-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0039-9

Keywords

Navigation