Skip to main content
Log in

Controlling the electronic properties of Gd: MoS2 monolayer with perpendicular electric field

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A systematic computational study to demonstrate electric field dependence of electronic properties of Gd doped MoS2monolayer is being reported. Density functional theory (DFT) based calculated were performed using ADF-BAND package to investigate the effects of applied electric field on pure and Gd doped monolayer of MoS2using supercell approach. A detailed analysis of electric field dependence of host and dopant related states in the monolayers was carried out and discussed to explore the possible implications in devices. The findings on the basis of calculated results indicate that band gap of the monolayer decrease with increase in value of applied electric field. A model indicating this behaviour is also reported. It was further revealed that the formation energy of the monolayers exhibits a consistent decrease with increase in electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, A. F. Hebard, Phys. Rev. X 2, 011002 (2012)

    Google Scholar 

  2. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, A. F. Hebard, Nano Lett. 12, 2745–2750 (2012)

    Article  Google Scholar 

  3. S. Tongay, M. Lemaitre, T. Schumann, K. Berke, B. R. Appleton, B. Gila, A. F. Hebard, Appl. Phys. Lett. 99, 102102 (2011)

    Article  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  5. L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Sci. Adv. 1, e1500222 (2015)

    Article  Google Scholar 

  6. Y. Obeng, P. Srinivasan, Electrochem. Soc. Interface 20, 47 (2011)

    Google Scholar 

  7. A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  Google Scholar 

  8. Z. Jiang, Y. Zhang, H. Stormer, P. Kim, Phys. Rev. Lett. 99, 106802 (2007)

    Article  Google Scholar 

  9. N. M. R. Peres, J. Phys. Condens. Matter 21, 323201 (2009)

    Article  Google Scholar 

  10. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, P. Avouris, Nature 472, 74–78 (2011)

    Article  Google Scholar 

  11. E. Kan, H. Ren, F. Wu, Z. Li, R. Lu, C. Xiao, K. Deng, J. Yang, J. Phys. Chem. C 116, 3142 (2012)

    Article  Google Scholar 

  12. MoS 2 : Material, Physics and Devices, edited by Z. M. Wang, 21. (Springer, 2014)

  13. A. Kumar, P. K. Ahluwalia, J. Alloys Compd. 550, 283 (2013)

    Article  Google Scholar 

  14. X. Tong, E. Ashalley, F. Lin, H. Li, Z. M. Wang, Nano-Micro Lett. 7, 203–218 (2015))

    Article  Google Scholar 

  15. S. Methfessel, IEEE Trans. Magn. 1, 144–155 (1965)

    Article  Google Scholar 

  16. E. Ascher, H. Rider, H. Schimid, H. Stössel, J. Appl. Phys. 37, 1404–1405 (1966)

    Article  Google Scholar 

  17. L. Huang, Q. Yue, J. Kang, Y. Li, J. Li, Condens. Matter 26, 295304 (2014)

    Article  Google Scholar 

  18. M. Sharma, A. Kumar, P. K. Ahluwalia, R. Pandey, J. Appl. Phys. 116, 063711 (2014)

    Article  Google Scholar 

  19. N. Zibouche, P. Philipsen, A. Kuc, T. Heine, Phys. Rev. B 90, 125440 (2014)

    Article  Google Scholar 

  20. N. Feng, W. Mi, Y. Cheng, Z. Guo, U. Schwingenschlögl, H. Bai, Sci. Rep. 4(3987) (2014)

  21. X. Lin, J. Ni, J. Appl. Phys. 116, 044311 (2014)

    Article  Google Scholar 

  22. K. Zhang et al., Nano Lett. 15, 6586 (2015)

    Article  Google Scholar 

  23. T. J. Mullen, M. Zhang, W. Feng, R. J. El-khouri, L. Sun, C. Yan, T. E. Patten, G. Liu, ACS Nano 5, 6539 (2011)

    Article  Google Scholar 

  24. C. Tan, D. Xu, K. Zhang, X. Tian, W. Cai, J. Nanomater. 2015, 329570 (2015)

    Google Scholar 

  25. M. Abdul, Z. Ghaffar, U. A. Rana, S. U. Khan, M. Yoshiya, Comput. Theor. Chem. 1084, 98–102 (2016)

    Article  Google Scholar 

  26. X. J. Zhang, X. C. Wang, W. B. Mi, Solid State Commun. 212, 35–40 (2015)

    Article  Google Scholar 

  27. G. TeVelde, F. M. Bickelhaupt, J. Comput. Chem. 22, 931 (2001)

    Article  Google Scholar 

  28. I. Vladimir, F. Anisimov, A. Aryasetiawan, I. Lichtenstein, J. Phys. Condens. Matter 9, 767–808 (1997)

    Article  Google Scholar 

  29. E.S.W. Kong, Nanomaterials, Polymers and Devices: Materials Functionalization and device Fabrication (John Wiley & Sons, 2015)

  30. H. Ohno et al., Nature 408, 944–946 (2000)

    Article  Google Scholar 

  31. D. Chiba, M. Yamanouchi, F. Matsukura, H. Ohno, Science 301, 943–945 (2003)

    Article  Google Scholar 

  32. A. Majid, A. Ali, J. Phys. D. Appl. Phys. 42, 045412 (2009)

    Article  Google Scholar 

  33. Q. Zhang, M. G. Verde, J. K. Seo, X. Li, S. Meng, J. Power Sources 280, 355–362 (2015)

    Article  Google Scholar 

  34. M. A. Farrukh, M. Shahid, I. Muneer, S. Javaid, M. Khaleeq-ur-Rahman, J. Mater. Sci. Mater. Electron. 27, 2994–3002 (2015)

    Article  Google Scholar 

  35. J. Xu, Y. Ao, D. Fu, C. Yuan, Colloids Surf. A Physicochem. Eng. Asp. 334, 107–111 (2009)

    Article  Google Scholar 

  36. W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 442, 759–765 (2006)

    Article  Google Scholar 

  37. C. G. Duan et al., Phys. Rev. Lett. 101, 137201 (2008)

    Article  Google Scholar 

  38. K. Nakamura et al., Phys. Rev. Lett. 102, 187201 (2009)

    Article  Google Scholar 

  39. A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B 84, 205325 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Abdul Majid, international research fellow of Japan Society for the promotion of science (JSPS), acknowledges financial support from JSPS. U. A. Rana would like to extend his sincere appreciation to the Deanship of Scientific Research at the King Saud University for its funding of this research through the Prolific Research Group, Project No. PRG-1436-18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul Majid or Usman Ali Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, A., Ullah, A., Iqbal, T. et al. Controlling the electronic properties of Gd: MoS2 monolayer with perpendicular electric field. J Electroceram 37, 29–33 (2016). https://doi.org/10.1007/s10832-016-0035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0035-0

Keywords

Navigation