Skip to main content
Log in

Defect chemistry and transport properties of Nd-doped Pb(ZrxTi1−x)O3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The oxygen partial pressure (pO2) dependent conductivity of Nd3+ doped PZT was investigated at different temperatures in order to get information on the nature of the conducting charge carriers and on the chemical oxygen diffusion coefficient. From a positive slope close to 0.25 in log (conductivity) vs. log (pO2) plots it is concluded that PZT with donor-type Nd3+ shows predominant hole conduction already at moderately high oxygen partial pressures, while under reducing conditions electron conduction prevails. This unexpected occurrence of hole conduction in a nominally donor doped system is interpreted in terms of the only partially controllable loss of lead oxide during preparation, which results in the formation of lead vacancies. Those act as acceptors at the temperatures employed in this study (560–615 °C) and turn the nominally donor doped material into a slightly acceptor doped one. From the conductivity relaxation after partial pressure changes, chemical oxygen diffusion coefficients could be extracted and values of about 6.5·10−9 cm2/s at 560 °C and 2·10−8 cm2/s at 611 °C are found in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Daniels, K.H. Härdtl, R. Wernicke, Philips Technol. Rev 38, 73–82 (1978)

    Google Scholar 

  2. J. Gerblinger, H. Meixner, Sensors Actuators B Chem. 4, 99–102 (1991)

    Article  Google Scholar 

  3. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity, Evolution and Future of a Technology, (2008)

  4. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  5. R. Waser, T. Baiatu, K.H. Härdtl, J. Am. Soc. 73(6), 1654–1662 (1990)

    Google Scholar 

  6. J. Daniels, K.H. Härdtl, Philips Res. Repts. 31, 489–504 (1976)

    Google Scholar 

  7. J. Daniels, K.H. Härdtl, R. Wernicke, Philips Technol. Rev 38, 73–82 (1976)

    Google Scholar 

  8. N.H. Chan, R.K. Sharma, D.M. Smyth, J. Am. Ceram. Soc. 64, 556–562 (1981)

    Article  Google Scholar 

  9. H. Neumann, G. Arlt, Ferroelectrics 69(1), 179–186 (1986)

    Article  Google Scholar 

  10. H.L. Tuller, Solid State Ionics 94, 63–74 (1997)

    Article  Google Scholar 

  11. R. Moos, K.H. Hardtl, J. Am. Ceram. Soc. 80, 2549–2562 (1997)

    Article  Google Scholar 

  12. I. Denk, W. Münch, J. Maier, J. Am. Ceram. Soc. 78, 3265–3272 (1995)

    Article  Google Scholar 

  13. S. Rodewald, J. Fleig, J. Maier, J. Am. Ceram. Soc. 83, 1969–1976 (2000)

    Article  Google Scholar 

  14. S. Steinsvik, R. Bugge, J.O.N. GjoeNnes, J. Taftoe, T. Norby, J. Phys. Chem. Solids 58, 969–976 (1997)

    Article  Google Scholar 

  15. T. Frömling, A. Schintlmeister, H. Hutter, J. Fleig, J. Am. Ceram. Soc. 94, 1173–1181 (2011)

    Article  Google Scholar 

  16. M.V. Raymond, D.M. Smyth, Ferroelectrics 144, 129–135 (1993)

    Article  Google Scholar 

  17. M.V. Raymond, D.M. Smyth, J. Phys. Chem. Solids 57, 1507–1511 (1996)

    Article  Google Scholar 

  18. N.J. Donnelly, C.A. Randall, Applied Physics Letters 96 (2010) 052906-052906-052903.

  19. L. Andrejs, J. Fleig, J. Eur. Ceram. Soc. 33, 779–794 (2013)

    Article  Google Scholar 

  20. M.V. Raymond, D.M. Smyth, Integr. Ferroelectr. 4, 145–154 (1994)

    Article  Google Scholar 

  21. Y. Xu, X. Yuhuan, Ferroelectric materials and their applications, North-Holland Amsterdam ets, (1991)

  22. J. Maier, Phys. Chem. Chem. Phys. 5, 2164–2173 (2003)

    Article  Google Scholar 

  23. D.L. Corker, R.W. Whatmore, E. Ringgaard, W.W. Wolny, J. Eur. Ceram. Soc. 20, 2039–2045 (2000)

    Article  Google Scholar 

  24. A.J. Moulson, J.M. Herbert, Electroceramics, John Wiley & Sons, Ltd, (2003)

  25. N.J. Donnelly, C.A. Randall, J. Appl. Phys. 109, 104107–104106 (2011)

    Article  Google Scholar 

  26. B.A. Boukamp, M.T.N. Pham, D.H.A. Blank, H.J.M. Bouwmeester, Solid State Ionics 170, 239–254 (2004)

    Article  Google Scholar 

  27. D.M. Smyth, Curr. Opinion Solid State Mater. Sci. 1, 692–697 (1996)

    Article  Google Scholar 

  28. J.v. Rudolph, Zeitschrift Naturforschung Teil A 14 (1959) 727.

  29. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press London and New York, (1971)

  30. W. Long, W. Tien-Shou, W. Chung-Chuang, L. Hsi-Chuan, J. Phys. C Solid State Phys. 16, 2823 (1983)

    Article  Google Scholar 

  31. J. Maier, Physical Chemistry of Ionic Materials, John Wiley & Sons, Ltd, (2005)

  32. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 3, 1668–1678 (2001)

    Article  Google Scholar 

  33. J. Jamnik, J. Maier, J. Electrochem. Soc. 146(11), 4183–4188 (1999)

    Article  Google Scholar 

  34. J. Fleig, J. Maier, Phys. Chem. Chem. Phys. 1, 3315–3320 (1999)

    Article  Google Scholar 

  35. J. Fleig, Solid State Ionics 150, 181–193 (2002)

    Article  Google Scholar 

  36. D. Fasquelle, J.C. Carru, J. Eur. Ceram. Soc. 28, 2071–2074 (2008)

    Article  Google Scholar 

  37. A. Shafiei, C. Oprea, A. Alfantazi, T. Troczynski, J. Appl. Phys. 109, 114108 (2011)

    Article  Google Scholar 

  38. M. Wu, H. Huang, B. Jiang, W. Chu, Y. Su, J. Li, L. Qiao, J. Mater. Sci. 44, 5768–5772 (2009)

    Article  Google Scholar 

  39. Y. Shimakawa, Y. Kubo, Appl. Phys. Lett. 77, 2590–2592 (2000)

    Article  Google Scholar 

  40. Y.-M. Chiang, D.P. Birnie, W.D. Kingery, Physical ceramics, J. Wiley, (1997)

  41. R. Moos, W. Menesklou, K.H. Härdtl, Appl. Phys. A 61, 389–395 (1995)

    Article  Google Scholar 

  42. T. Frömling, H. Hutter, J. Fleig, J. Am. Ceram. Soc. 95, 1692–1700 (2012)

    Article  Google Scholar 

  43. W. Preis, E. Bucher, W. Sitte, Solid State Ionics 175, 393–397 (2004)

    Article  Google Scholar 

  44. G. Holzlechner, D. Kastner, C. Slouka, H. Hutter, J. Fleig, Solid State Ionics 262, 625–629 (2014)

Download references

Acknowledgement

Financial support by Christian Doppler Research Association (CDG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Fleig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slouka, C., Andrejs, L. & Fleig, J. Defect chemistry and transport properties of Nd-doped Pb(ZrxTi1−x)O3 . J Electroceram 33, 221–229 (2014). https://doi.org/10.1007/s10832-014-9954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9954-9

Keywords

Navigation