Skip to main content
Log in

Study of compaction and sintering of nanosized oxide powders by in situ electrical measurements and dilatometry: Nano CeO2—case study

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Densification and sintering of CeO2 nanoparticles and their electrical properties were simultaneously studied as a function of temperature in controlled atmosphere using a modified dilatometer. CeO2 nanoparticles simultaneously shrink and become more resistive upon initial heating, associated with desorption of water. The electrical conductance G at 300–550 °C revealed a pO2 dependence described by log (G) = A + n × log (pO2) with n ~ −1/6, consistent with n-type conduction. The results were analyzed with a defect equilibrium model based on the reduction of ceria and formation of doubly ionized oxygen vacancies and electrons. The activation energy was found equal to (1.3 ± 0.1) eV, which results in an enthalpy of reduction of (2.7 ± 0.4) eV, considerably lower than that for bulk ceria (~4.5 eV). The coarsening of particles during heat treatment at 800 °C were analysed assuming grain boundary diffusion-limited sintering. Although the coarsened powder shows a similar pO2 dependence, the activation energy was considerably higher (1.9 ± 0.1) eV, leading to a reduction enthalpy of (4.5 ± 0.4) eV. The decrease in the enthalpy of reduction with decreasing particle size is consistent with the increasing fraction of oxide ions residing at the surface. Alternate interpretations based on space charge effects and surface adsorption/desorption were considered and found to be less consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.L. Tuller, Solid State Ionics 131, 143 (1998)

    Article  Google Scholar 

  2. H.L. Tuller, S.J. Litzelman, W. Jung, Phys. Chem. Chem. Phys. 11, 3023 (2009)

    Article  Google Scholar 

  3. J. Maier, in Nanocrystalline Metals and Oxides—Selected Properties and Applications, ed. by P. Knauth, J. Schoonman (Kluwer, Boston, 2002), p. 84

    Google Scholar 

  4. E.D. Wachsman, K.T. Lee, Science 334, 935 (2011)

    Article  Google Scholar 

  5. T. Djenizian, I. Hanzu, P. Knauth, J. Mater. Chem. 21, 9925 (2011)

    Article  Google Scholar 

  6. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)

    Article  Google Scholar 

  7. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006)

    Article  Google Scholar 

  8. A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995)

    Article  Google Scholar 

  9. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)

    Article  Google Scholar 

  10. J.H. Hwang, D.S. McLachlan, T.O. Mason, J. Electroceram. 3, 7 (1999)

    Article  Google Scholar 

  11. J.H. Hwang, T.O. Mason, Z. Phys. Chem. 207, 21 (1998)

    Article  Google Scholar 

  12. S. Kim, J. Maier, J. Electrochem. Soc. 149, J73 (2002)

    Article  Google Scholar 

  13. P. Knauth, H.L. Tuller, Solid State Ionics 136, 1215 (2000)

    Article  Google Scholar 

  14. H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 122, 255 (1975)

    Article  Google Scholar 

  15. H.L. Tuller, A.S. Nowick, J. Phys. Chem. Solids 38, 859 (1977)

    Article  Google Scholar 

  16. H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 126, 209 (1979)

    Article  Google Scholar 

  17. A. Tschope, J.Y. Ying, H.L. Tuller, Sensors Actuators B-Chem. 31, 111 (1996)

    Article  Google Scholar 

  18. B. Neltner, B. Peddie, A. Xu, W. Doenlen, K. Durand, D.S. Yun, S. Speakman, A. Peterson, A. Belcher, ACS Nano 4, 3227 (2010)

    Article  Google Scholar 

  19. P. Knauth, H.L. Tuller, J. Eur. Ceram. Soc. 19, 831 (1999)

    Article  Google Scholar 

  20. M. Kuhn, S.R. Bishop, J.L.M. Rupp, H.L. Tuller, Acta Mater. 61, 4277 (2013)

    Article  Google Scholar 

  21. J.L.M. Rupp, A. Infortuna, L.J. Gauckler, Acta Mater. 54, 1721 (2006)

    Article  Google Scholar 

  22. J.L.M. Rupp, L.J. Gauckler, Solid State Ionics 177, 2513 (2006)

    Article  Google Scholar 

  23. S.W. Yang, L. Gao, J. Am. Chem. Soc. 128, 9330 (2006)

    Article  Google Scholar 

  24. H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, J. Phys. Chem. B 109, 24380 (2005)

    Article  Google Scholar 

  25. C.W. Sun, H. Li, L.Q. Chen, Energy Environ. Sci. 5, 8475 (2012)

    Article  Google Scholar 

  26. C. Laberty-Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher, D.R. Rolison, Chem. Mater. 18 (2006)

  27. A. Weibel, R. Bouchet, F. Boulc’h, P. Knauth, Chem. Mater. 17, 2378 (2005)

    Article  Google Scholar 

  28. Johanna Engel, Sean R. Bishop, Harry L. Tuller, L. Vayssieres, in Advanced Functional Materials, (2014). doi:10.1002/adfm.201400203

  29. R. Muccillo, E.N.S. Muccillo, J. Eur. Ceram. Soc. 33, 515 (2013)

    Article  Google Scholar 

  30. O. Mazar, in PhD thesis, Technion, Israel Institute of Technology, Haifa, Israel (2013)

  31. D. Marrocchelli, S.R. Bishop, H.L. Tuller, B. Yildiz, Adv. Funct. Mater. 22, 1958 (2012)

    Article  Google Scholar 

  32. H.J. Avila-Paredes, E. Barrera-Calva, H.U. Anderson, R.A. De Souza, M. Martin, Z.A. Munir, S. Kim, J. Mater. Chem. 20, 6235 (2010)

    Article  Google Scholar 

  33. F. Maglia, I.G. Tredici, G. Spinolo, U. Anselmi-Tamburini, J. Mater. Res. 27, 1975 (2012)

    Article  Google Scholar 

  34. Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki, M. Ishigame, J. Electrochem. Soc. 146, 2948 (1999)

    Article  Google Scholar 

  35. J.R. MacDonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, (Wiley, 1987)

  36. A.S. Nowick, A.V. Vaysleyb, I. Kuskovshy, Phys. Rev. B 58, 8398 (1998)

    Article  Google Scholar 

  37. N.H. Perry, T.C. Yeh, T.O. Mason, J. Am. Ceram. Soc. 94, 508 (2011)

    Article  Google Scholar 

  38. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, J.Y. Ying, Appl. Phys. Lett. 69, 185 (1996)

    Article  Google Scholar 

  39. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, J.Y. Ying, J. Electroceram. 1, 7 (1997)

    Article  Google Scholar 

  40. A. Tschöpe, Solid State Ionics 139, 267 (2001)

    Article  Google Scholar 

  41. D.L. Johnson, J. Appl. Phys. 40, 192 (1969)

    Article  Google Scholar 

  42. S. Hayun, S.V. Ushakov, A. Navrotsky, J. Am. Ceram. Soc. 94, 3679 (2011)

    Article  Google Scholar 

  43. S. Swaroop, M. Kilo, C. Argirusis, G. Borchardt, A.H. Chokshi, Acta Mater. 53, 4975 (2005)

    Article  Google Scholar 

  44. K.R. Lee, J.H. Lee, H.I. Yoo, Phys. Chem. Chem. Phys. 15, 15632 (2013)

    Article  Google Scholar 

  45. S.J. Litzelman, H.L. Tuller, Solid State Ionics 180, 1190 (2009)

    Article  Google Scholar 

  46. Y.P. Xiong, H. Kishimoto, K. Yamaji, M. Yoshinaga, T. Horita, M.E. Brito, H. Yokokawa, Solid State Ionics 192, 476 (2011)

    Article  Google Scholar 

  47. H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, J. Appl. Electrochem. 18, 527 (1988)

    Article  Google Scholar 

  48. S.R. Bishop, K.L. Duncan, E.D. Wachsman, Electrochim. Acta 54, 1436 (2009)

    Article  Google Scholar 

  49. T.X.T. Sayle, S.C. Parker, C.R.A. Catlow, J. Chem. Soc. Chem. Comm. 977 (1992)

  50. W.C. Chueh, A.H. McDaniel, M.E. Grass, Y. Hao, N. Jabeen, Z. Liu, S.M. Haile, K.F. McCarty, H. Bluhm, F. El Gabaly, Chem. Mater. 24, 1876 (2012)

    Article  Google Scholar 

  51. S.R. Bishop, K.L. Duncan, E.D. Wachsman, Acta Mater. 57, 3596 (2009)

    Article  Google Scholar 

  52. P. Knauth, H.L. Tuller, J. Appl. Phys. 85, 897 (1999)

    Article  Google Scholar 

  53. O. Porat, E.B. Lavik, H.L. Tuller, Y.-M. Chiang, in Nanophase and Nanocomposite Materials II, ed. by S. Komarneni, J. Parker, H. Wollenberger (Materials Research Society, Pittsburgh, 1997), p. 99

    Google Scholar 

  54. S. Kim, R. Merkle, J. Maier, Surf. Sci. 549, 196 (2004)

    Article  Google Scholar 

  55. O.K. Varghese, L.K. Malhotra, J. Appl. Phys. 87, 7457 (2000)

    Article  Google Scholar 

  56. W. Gopel, K.D. Schierbaum, Sensors Actuators B-Chem. 26, 1 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the US-Department of Energy—Basic Energy Sciences, Grant No. DE-SC0002633 for financial support. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-0819762. P. K. wishes to thank H. L. T. for the kind hospitality during his sabbatical at the Massachusetts Institute of Technology. The authors thank Dr. Scott Speakman for assistance with the XRD analysis. SRB thanks I2CNER, supported by the World Premier International Research Initiative (WPI), MEXT Japan, for travel funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Knauth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knauth, P., Engel, J., Bishop, S.R. et al. Study of compaction and sintering of nanosized oxide powders by in situ electrical measurements and dilatometry: Nano CeO2—case study. J Electroceram 34, 82–90 (2015). https://doi.org/10.1007/s10832-014-9946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9946-9

Keywords

Navigation