Skip to main content
Log in

High dielectric permittivity of SrBi2Nb2O9(SBN) added Bi2O3 and La2O3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this paper, the structural and dielectric properties of SrBi2Nb2O9 (SBN) as a function of Bi2O3 or La2O3 addition level in the radio (RF) and microwave frequencies were investigated. The SBN, were prepared by using a new procedure in the solid-state reaction method with the addition of 3; 5; 10 and 15 wt.% of Bi2O3 or La2O3. A single orthorhombic phase was formed after calcination at 900 °C for 2 h. The analysis by x-ray diffraction (XRD) using the Rietveld refinement confirmed the formation of single-phase compound with a crystal structure (a = 5.5129 Å, b = 5.5183 Å and c = 25.0819 Å; α = β = γ = 90°). Scanning Electron Microscope (SEM) micrograph of the material shows globular morphologies (nearly spherical) of grains throughout the surface of the samples. The Curie temperature found for the undoped sample was about 400 °C, with additions of Bi3+, the temperature decreases and with additions of La3+ the Curie temperature increased significantly above 450 °C. In the measurements of the dielectric properties of SBN at room temperature, one observe that at 10 MHz the highest values of permittivity was observed for SBN5LaP (5%La2O3) with values of 116,71 and the lower loss (0.0057) was obtained for SBN15LaP (15%La2O3). In the microwave frequency region, Bi2O3 added samples have shown higher dielectric permittivity than La2O3 added samples, we highlight the SBN15BiG (15 % Bi2O3) with the highest dielectric permittivity of 70.32 (3.4 GHz). The dielectric permittivity values are in the range of 28–71 and dielectric losses are of the order of 10−2. The samples were investigated for possible applications in RF and microwave components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Aurivillius, Ark. Kemi (1950) 519

  2. J.F. Scott, C.A.P. de Araujo, Science 246, 1400 (1989)

    Article  CAS  Google Scholar 

  3. B. Aurivillius, Ark. Kemi (1949) 463

  4. J. Robertson, C.W. Chen, W.L. Warren, C.C. Gutleben, Appl. Phys. Lett. 69, 1704 (1996)

    Article  CAS  Google Scholar 

  5. C.A.P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)

    Article  Google Scholar 

  6. Y. Wu, G.Z. Cao, Appl. Phys. Lett. 75, 2650 (1999)

    Article  CAS  Google Scholar 

  7. Y. Wu, G.Z. Cao, J. Mater. Sci. Lett. 19, 267 (2000)

    Article  CAS  Google Scholar 

  8. S. Ezhilvalavan, J.M. Xue, J. Wang, J. Phys D:Appl Phys 35, 2254 (2002)

    Article  CAS  Google Scholar 

  9. G.Z. Liu, H.S. Gu, C. Wang, J. Qiu, H.B. Lu, Chin. Phys. Lett. 24, 2387 (2007)

    Article  CAS  Google Scholar 

  10. G.Z. Liu, C. Wang, H.S. Gu, H.B. Lu, J. Phys D:Appl Phys 40, 7817 (2007)

    Article  CAS  Google Scholar 

  11. E.C. Subbarao, Phys. Rev. 122, 804 (1961)

    Article  CAS  Google Scholar 

  12. X-ray Laboratory, Federal University of Ceará, Available at:<http://www.raiosx.ufc.br/site/>. Accessed on: April 7, 2012.

  13. A.J. Moulson, J.M. Herbert, Electroceramics (Chapman and Hall, London, 1990)

    Google Scholar 

  14. C. Yeh, F.I. Shimabukuro, The Essence of Dielectric Waveguides (Springer Science + Business Media, New York, 2008)

    Book  Google Scholar 

  15. M.N. Afsar, K.J. Button, Millimeter-wave dielectric measurement of materials. Proc. IEEE 73, 131 (1985)

    Article  CAS  Google Scholar 

  16. B.W. Hakki, P.D. Coleman, Microw. Theory Tech. 3, 402–410 (1960)

    Article  Google Scholar 

  17. D. Dhak, P. Dhak, P. Pramanik, Appl Surf Sci 254, 3078 (2008)

    Article  CAS  Google Scholar 

  18. R.C. Buchanan, Ceramic Material for Electronics: Processing, Properties and Applications, 2nd edn. (Marcel Dekker INC., United States of American, 1991), p. 532

    Google Scholar 

  19. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl Phys. Lett. 88, 212907 (2006)

    Article  Google Scholar 

  20. M.M. Kumar, K.L.J. Yadav, Phys.: Condens. Matter 18, L503 (2006)

    Article  CAS  Google Scholar 

  21. F. Gerrero, J.J. Portejes, H. Amorin, A. Fundora, J. Siqueiros, G. Hirata, J. Eur. Ceram. Soc. 18, 745 (1998)

    Article  Google Scholar 

  22. V. Shrivstava, A.K. Jha, R.G. Mendiratta, Dielectric studies of La and Pb doped SrBi2Nb2O9 ferroelectric ceramic. Mater Lett 60, 1459–1462 (2006)

    Article  Google Scholar 

  23. M.J.S. Rocha, M.C.C. Filho, K.R.B. Theophilo, J.C. Denardin, I.F. Vasconcelos, E.B. Araújo, A.S.B. Sombra, Ferrimagnetism and ferroelectricity of the composite matrix: SrBi2Nb2O9 (SBN)X-BaFe12019(BFO)100–X. Mater Sci Appl 3, 6–17 (2012). doi:10.4236/msa.2012.31002

    Google Scholar 

  24. C.C. Silva, A.S.B. Sombra, Temperature dependence of the magnetic and electric properties of Ca2Fe2O5. Mater Sci Appl 2(n.9), 1349–1353 (2011). doi:10.4236/msa.2011.29183

    Google Scholar 

Download references

Acknowledgments

This work was partly sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and X-ray Laboratory, Federal University of Ceará Process: 402561/2007-4 (Edital MCT/CNPq no 10/2007) and the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-11-1-0095)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Sancho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancho, E.O., Silva, P.M.O., Júnior, G.F.M.P. et al. High dielectric permittivity of SrBi2Nb2O9(SBN) added Bi2O3 and La2O3 . J Electroceram 30, 119–128 (2013). https://doi.org/10.1007/s10832-012-9772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-012-9772-x

Keywords

Navigation