Skip to main content
Log in

Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Understanding the patterns of interconnections between neurons in complex networks is an enormous challenge using traditional physiological approaches. Here we combine the use of an information theoretic approach with intracellular recording to establish patterns of connections between layers of interneurons in a neural network responsible for mediating reflex movements of the hind limb of an insect. By analysing delayed mutual information of the synaptic and spiking responses of sensory neurons, spiking and nonspiking interneurons in response to movement of a joint receptor that monitors the position of the tibia relative to the femur, we are able to predict the patterns of interconnections between the layers of sensory neurons and interneurons in the network, with results matching closely those known from the literature. In addition, we use cross-correlation methods to establish the sign of those interconnections and show that they also show a high degree of similarity with those established for these networks over the last 30 years. The method proposed in this paper has great potential to elucidate functional connectivity at the neuronal level in many different neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alle, H., & Geiger, J. R. P. (2006). Combined analog and action potential coding in Hippocampal mossy fibers. Science, 311(5765), 1290–1293. doi:10.1126/ science.1119055.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, J. F., Mananas, M. A., Topor, D. H. Z. L., & Bruce, E. N. (2007). Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort. IEEE Transactions on Biomedical Engineering, 54(9), 1573–1582.

    Article  PubMed  Google Scholar 

  • Amblard, P. O., & Michel, O. J. J. (2011). On directed information theory and granger causality graphs. Journal of Computational Neuroscience, 30(1), 7–16.

    Article  PubMed  Google Scholar 

  • Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., & Newland, P. L. (2012). The dynamics of analogue signaling in local networks controlling limb movement. The European Journal of Neuroscience, 36(9), 3269–3282. doi:10.1111/j.1460-9568.2012.08236.x.

    Article  PubMed  Google Scholar 

  • Bialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity and learnings. Neural Computation, 13(11), 2409–2463. doi:10.1162/089976601753195969.

    Article  CAS  PubMed  Google Scholar 

  • Bressler, S. L., & Seth, A. K. (2011). Wiener-granger causality: a well established methodology. NeuroImage, 58(2), 323–329. doi:10.1016/j.neuroimage.2010.02.059.

    Article  PubMed  Google Scholar 

  • Burrows, M. (1979). Graded synaptic interactions between local pre-motor interneurons of the locust. Journal of Neurophysiology, 42(4), 1108–1123.

    CAS  PubMed  Google Scholar 

  • Burrows, M. (1987). Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. The Journal of Neuroscience, 7, 1064–1080.

    CAS  PubMed  Google Scholar 

  • Burrows M (1996) The Neurobiology of an Insect Brain. Oxford University Press, UK, ISBN-13: 978–0198523444

  • Burrows, M., & Newland, P. L. (1993). Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. The Journal of Comparative Neurology, 329(3), 412–26.

    Article  CAS  PubMed  Google Scholar 

  • Burrows, M., Laurent, G., & Field, L. H. (1988). Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. The Journal of Neuroscience, 8, 3085–3093.

    CAS  PubMed  Google Scholar 

  • Büschges, A. (1990). Nonspiking pathways in a joint-control loop of the stick insect carausius morosus. The Journal of Experimental Biology, 151, 133–160.

    Google Scholar 

  • Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Dewhirst, O. P., Angarita-Jaimes, N., Simpson, D. M., Allen, R., & Newland, P. L. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1), 39–58. doi:10.1007/s10827-012-0405-9.

    Article  PubMed  Google Scholar 

  • DiCaprio, R. A. (2004). Information transfer rate of nonspiking afferent neurons in the crab. Journal of Neurophysiology, 92(1), 302–310. doi:10.1152/jn.01176.2003.

    Article  PubMed  Google Scholar 

  • Dionisio, A., Menezes, R., & Mendes, D. A. (2004). Mutual information: a measure of dependency for nonlinear time series. Physica A, 344, 326–329.

    Article  Google Scholar 

  • Erdogmus, D., & Principe, J. C. (2006). From linear adaptive filtering to nonlinear information processing. IEEE Signal Processing Magazine, 24(6), 14–33. doi:10.1109/SP-M.2006.248709.

    Article  Google Scholar 

  • Gerhard F, Kispersky T, Gutierrez GJ, Marder E, Kramer M, Eden U (2013) Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone. PLoS Comp Biol 9(7), DOI10.1371/journal.pcbi.1002653

  • Hlavácková-Schindler, K., Palus, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1–46. doi:10.1016/j.physrep.2006.12.004.

    Article  Google Scholar 

  • Jin, S. H., Lin, P., & Hallett, M. (2010). Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction. Clinical Neurophysiol, 121(3), 392–401. doi:10.1016/j.clinph. 2009.09.033.

    Article  Google Scholar 

  • Jirsa, V. K., & McIntosh, A. R. (2007). Handbook of brain connectivity- understanding complex systems. New York: Springer.

    Book  Google Scholar 

  • Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.

    CAS  PubMed  Google Scholar 

  • Laughlin, S. B., De Ruyter Van Steveninck, R. R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nature Neuroscience, 1(1), 36–41. doi:10.1038/236.

    Article  CAS  PubMed  Google Scholar 

  • Levine, W. S. (1996). The control handbook. Boca Raton: CRC Press.

    Google Scholar 

  • Li, W. (1990). Mutual information functions versus correlation functions. Journal of Statistical Physics, 60(5–6), 823–837.

    Article  Google Scholar 

  • Li, X., & Ouyang, G. (2010). Estimating coupling direction between neuronal pop- ulations with permutation conditional mutual information. NeuroImage, 52(2), 497–507. doi:10.1016/j.neuroimage.2010.05.003.

    Article  PubMed  Google Scholar 

  • Lungarella M, Sporns O (2006) Mapping information flow in sensorimotor networks. PLoS Comp Biol 2(10), DOI http://dx.doi.org/10.1371/journal. pcbi.0020144 DOI:10.1371/journal.pcbi.0020144

  • Mars, N., & van Arragon, G. (1982). Time delay estimation in non-linear systems using average amount of mutual information analysis. Signal Processing, 4(2–3), 139–153. doi:10.1016/0165-1684(82)90017-2.

    Article  Google Scholar 

  • Marschinski, R., & Kantz, H. (2002). Analysing the information flow between financial time series. Europ Phys J B - Condensed Matter and Complex Systems, 30, 275–281. doi:10.1140/epjb/e2002-00379-2.

    Article  CAS  Google Scholar 

  • Matheson, T. (1990). Responses and locations of neurones in the locust metathoracic femoral chordotonal organ. Journal of Comparative Physiology. A, 166(6), 915–927. doi:10.1007/BF00187338.

    Article  Google Scholar 

  • Müller, T., Lauk, M., Reinhard, M., Hetzel, A., Lücking, C., & Timmer, J. (2003). Estimation of delay times in biological systems. Annals Biomedical Engineering, 31(11), 1423–1439. doi:10.1114/1.1617984.

    Article  Google Scholar 

  • Nagayama, T., Takahata, M., & Hisada, M. (1984). Functional characteristics of local non-spiking interneurons as the pre-motor elements in crayfish. Journal of Comparative Physiology. A, 154(4), 499–510. doi:10.1007/BF00610164.

    Article  Google Scholar 

  • Newland, P. L. (1990). Morphology of a population of mechanosensory ascending interneurones in the metathoracic ganglion of the locust. The Journal of Comparative Neurology, 299(2), 242–260. doi:10.1002/cne.902990208.

    Article  CAS  PubMed  Google Scholar 

  • Newland, P. L. (1991). Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. The Journal of Comparative Neurology, 312(4), 493–508.

    Article  CAS  PubMed  Google Scholar 

  • Newland, P. L., & Kondoh, Y. (1997a). Dynamics of neurons controlling movements of a locust hind leg II. flexor tibiae motor neurons. Journal of Neurophysiology, 77(4), 1731–1746.

    CAS  PubMed  Google Scholar 

  • Newland, P. L., & Kondoh, Y. (1997b). Dynamics of neurons controlling movements of a locust hind leg III. extensor tibiae motor neurons. Journal of Neurophysiology, 77(6), 3297–3310.

    CAS  PubMed  Google Scholar 

  • Nichols, J. (2006). Examining structural dynamics using information flow. Probabilistic Engineering Mechanics, 21(4), 420–433.

    Article  Google Scholar 

  • Nichols, J. M., Seaver, M., Trickey, S. T., Todd, M. D., Olson, C., & Overbey, L. (2005). Detecting nonlinearity in structural systems using the transfer entropy. Physical Review E, 72, 046,217. doi:10.1103/PhysRevE.72.046217.

    Article  CAS  Google Scholar 

  • Palus, M., Komárek, V., & Sterbová, Z. H. K. (2001). Synchronization as adjustment of information rates: detection from bivariate time series. Physical Review E, 63, 046211. doi:10.1103/PhysRevE.63.046211.

    Article  CAS  Google Scholar 

  • Pearl J (2009) Causal inference in statistics: An overview. Statistics Surveys 3:96–146 ISSN: 1935–7516, DOI:10.1214/09-SS057

  • Pérez, F., & Granger, B. (2007). Ipython: a system for interactive scientific computing. Computing Science Engineering, 9(3), 21–29. doi:10.1109/MCSE.2007.53.

    Article  Google Scholar 

  • Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill Higher Education.

    Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Reviews Letters, 85(2), 461–464. doi:10.1103/PhysRevLett.85.461.

    Article  CAS  Google Scholar 

  • Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical Reviews Letters, 77, 635.

    Article  CAS  Google Scholar 

  • Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D, 142(3–4), 346–382. doi:10.1016/S0167-2789(00)00043-9.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.

    Article  Google Scholar 

  • Shibuya T, Harada T, Kuniyoshi Y (2009) Causality quantification and its applications: Structuring and modeling of multivariate time series. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD’09, pp 787– 796, DOI 10.1145/ 1557019.1557106

  • Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature pp 761–765, DOI http://dx.doi.org/ 10.1038/nature04720

  • Sommerlade, L., Amtage, F., Lapp, O., Hellwig, B., Lücking, C. H., Timmer, J., & Schelter, B. (2011). On the estimation of the direction of information flow in networks of dynamical systems. Journal of Neuroscience Methods, 196(1), 182–189. doi:10.1016/j.jneumeth.2010.12.019.

    Article  PubMed  Google Scholar 

  • Stetter O, Battaglia D, Soriano J, Geisel T (2012) Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLos Comp Biol 8(8), DOI 10.1371/journal.pcbi.1002653

  • Therrien CW (1992) Discrete Random Signals and Statistical Signal Processing. Prentice Hall, NJ, United States of America

  • Usherwood, P. N. R., Runion, H. I., & Campbell, J. I. (1967). Structure and physiology of a chordotonal organ in the locust leg. The Journal of Experimental Biology, 48, 305–323.

    Google Scholar 

  • van Steveninck RR, D. R., & Laughlin, S. B. (1996). The rate of information transfer at graded-potential synapses. Nature, 379, 642–645. doi:10.1038/379642a0.

    Article  Google Scholar 

  • Vastano, J. A., & Swinney, H. L. (1988). Information transport in spatiotemporal systems. Physical Reviews Letters, 60, 1773–1776. doi:10.1103/PhysRevLett.60.1773.

    Article  Google Scholar 

  • Venema, V., Ament, F., & Simmer, C. (2006). A stochastic iterative amplitude adjusted fourier transform algorithm with improved accuracy. Nonlinear Processes in Geophysics, 13(3), 321–328. doi:10.5194/npg-13-321-2006.

    Article  Google Scholar 

  • Vidal-Gadea, A., Jing, X. J., Simpson, D. M., Dewhirst, O., Kondoh, Y., & Newland, R. A. P. (2010). Coding characteristics of spiking local interneurons during imposed limb movements in the locust. Journal of Neurophysiology, 103, 603–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward, B. D., & Mazaheri, Y. (2008). Information transfer rate in fMRI experiments measured using mutual information theory. J Neurosci Meth, 167(1), 22–30. doi:10.1016/j.jneumeth.2007.06.027.

    Article  Google Scholar 

  • Watson, A. H. D., & Burrows, M. (1987). Immunocytochemical and pharmacological evidence for gabaergic spiking local interneurons in the locust. The Journal of Neuroscience, 7, 174–1751.

    Google Scholar 

  • Wildman, M., Ott, S. R., & Burrows, M. (2002). Nonspiking pathways in a joint-control loop of the stick insect carausius morosus. The Journal of Experimental Biology, 205, 3651–3659.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vincent O’Connor and John Chad for their comments on an earlier draft of the manuscript. PLN and DMN were supported through awards from The Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council (United Kingdom) and CDM was supported through an award from the Research Foundation of Brazil (CNPq). PLN and CDM were supported by an award from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Endo.

Additional information

Action Editor: Catherine E Carr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, W., Santos, F.P., Simpson, D. et al. Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. J Comput Neurosci 38, 427–438 (2015). https://doi.org/10.1007/s10827-015-0548-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0548-6

Keywords

Navigation