Skip to main content
Log in

Cannabinoid-mediated short-term plasticity in hippocampus

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Endocannabinoids (eCBs) modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell’s activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell’s firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell’s activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alger, B.E. (2002). Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Progress in Neurobiology, 68(4), 247–286.

    Article  CAS  PubMed  Google Scholar 

  • Blair, R.E. (2006). Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. Journal of Pharmacology and Experimental Therapeutics, 317(3), 1072–1078.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Neu, A., Howard, A.L., Foldy, C., Echegoyen, J., Hilgenberg, L., Smith, M., Mackie, K., Soltesz, I. (2007). Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. Journal of Neuroscience, 27(1), 46–58.

    Article  PubMed  Google Scholar 

  • Diana, M.A., & Marty, A. (2004). Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). British Journal of Pharmacology, 142(1), 9–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Földy, C., Neu, A., Jones, M.V., Soltesz, I. (2006). Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. Journal of Neuroscience, 26(5), 1465–1469.

    Article  PubMed  Google Scholar 

  • Gao, Y., Vasilyev, D.V., Goncalves, M.B., Howell, F.V., Hobbs, C., Reisenberg, M., Shen, R., Zhang, M.Y., Strassle, B.W., Lu, P., et al (2010). Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. Journal of Neuroscience, 30(6), 2017–2024.

    Article  CAS  PubMed  Google Scholar 

  • Glickfeld, L.L., & Scanziani, M. (2006). Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neuroscience, 9(6), 807–815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman, D.F.M. (2009). The brian simulator. Frontiers in Neuroscience, 3(2), 192–197.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo, J., & Ikeda, S.R. (2004). Endocannabinoids modulate N-type calcium channels and G-protein-coupled inwardly rectifying potassium channels via CB1 cannabinoid receptors heterologously expressed in mammalian neurons. Molecular Pharmacology, 65(3), 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Hajos, N., & Freund, T.F. (2002). Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition. Chemistry and Physics of Lipids, 121(1–2), 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Hashimotodani, Y., Ohno-Shosaku, T., Watanabe, M., Kano, M. (2007). Roles of phospholipase cbeta and NMDA receptor in activity-dependent endocannabinoid release. Journal of Physiology, 584, 373–380.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G.A., Jaffe, D.B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18(4), 411–424.

    Article  PubMed  Google Scholar 

  • Hines, M.L., Morse, T., Migliore, M., Carnevale, N.T., Shepherd, G.M. (2004). Modeldb: A database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huguenard, J., & Mccormick, D.A. (1994). Electrophysiology of the neuron: an interactive tutorial. New York: Oxford University Press.

  • Iremonger, K.J., Wamsteeker Cusulin, J.I., Bains, J.S. (2013). Changing the tune: plasticity and adaptation of retrograde signals. Trends in Neurosciences, 36(8), 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., Watanabe, M. (2009). Endocannabinoid-mediated control of synaptic transmission. Physiological Reviews, 89(1), 309–380.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., & Alger, B.E. (2004). Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nature Neuroscience, 7(7), 697–698.

    Article  CAS  PubMed  Google Scholar 

  • Lenz, R.A., & Alger, B.E. (1999). Calcium dependence of depolarization-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. Journal of Physiology, 521, 147–157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marsicano, G. (2003). Cb1 cannabinoid receptors and on-demand defense against excitotoxicity. Science, 302(5642), 84–88.

    Article  CAS  PubMed  Google Scholar 

  • MATLAB (2010). version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts.

  • Monory, K., & Lutz, B. (2008). The endocannabinoid system as a therapeutic target in epilepsy. Cannabinoids and the Brain, 407–422.

  • Monory, K., Massa, F., Egertová, M., Eder, M., Blaudzun, H., Westenbroek, R., Kelsch, W., Jacob, W., Marsch, R., Ekker, M., et al (2006). The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron, 51(4), 455–466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morishita, W., & Alger, B.E. (1999). Evidence for endogenous excitatory amino acids as mediators in DSI of GABA(A)ergic transmission in hippocampal CA1. Journal of Neurophysiology, 82, 2556–2564.

    CAS  PubMed  Google Scholar 

  • Nowacki, J. (2011). Xppy. URL http://seis.bris.ac.uk/enxjn/xppy/.

  • Ohno-Shosaku, T., Maejima, T., Kano, M. (2001). Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron, 29(3), 729–738.

    Article  CAS  PubMed  Google Scholar 

  • Ohno-Shosaku, T., Shosaku, J., Tsubokawa, H., Kano, M. (2002a). Cooperative endocannabinoid production by neuronal depolarization and group i metabotropic glutamate receptor activation. European Journal of Neuroscience, 15(6), 953–961.

    Article  Google Scholar 

  • Ohno-Shosaku, T., Tsubokawa, H., Mizushima, I., Yoneda, N., Zimmer, A., Kano, M. (2002b). Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. Journal of Neuroscience, 22(10), 3864–3872.

    CAS  Google Scholar 

  • Pan, B., Wang, W., Zhong, P., Blankman, J.L., Cravatt, B.F., Liu, Q. (2011). Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. Journal of Neuroscience, 31(38), 13, 420–13, 430.

    Article  CAS  Google Scholar 

  • Peterfi, Z., Urban, G.M., Papp, O.I., Nemeth, B., Monyer, H., Szabo, G., Erdelyi, F., Mackie, K., Freund, T.F., Hajos, N., et al (2012). Endocannabinoid-mediated long-term depression of afferent excitatory synapses in hippocampal pyramidal cells and gabaergic interneurons. Journal of Neuroscience, 32(41), 14, 448–14, 463.

    Article  CAS  Google Scholar 

  • Piomelli, D., Giuffrida, A., Calignano, A., Rodriguez de Fonseca, F. (2000). The endocannabinoid system as a target for therapeutic drugs. Trends in Pharmacological Sciences, 21(6), 218–224.

    Article  CAS  PubMed  Google Scholar 

  • De Schutter, E., & Smolen, P. (1998). Methods in neuronal modeling: from ions to networks, The MIT Press, chapter Calcium dynamics in large neuronal models.

  • Shinomoto, S., & Sakai, Y. (1999). Inter-spike interval statistics of cortical neurons. Lecture Notes in Computer Science, 171–179.

  • Straiker, A., Wager-Miller, J., Hu, S.S., Blankman, J.L., Cravatt, B.F., Mackie, K. (2011). COX-2 and fatty acid amide hydrolase can regulate the time course of depolarization-induced suppression of excitation. British Journal of Pharmacology, 164(6), 1672–1683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanimura, A., Yamazaki, M., Hashimotodani, Y., Uchigashima, M., Kawata, S., Abe, M., Kita, Y., Hashimoto, K., Shimizu, T., Watanabe, M., Sakimura, K., Kano, M. (2010). The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron, 65, 320–327.

    Article  CAS  PubMed  Google Scholar 

  • Traub, R.D., & Miles, R. (1991). Neuronal Networks of the Hippocampus. New York: Cambridge University Press.

  • Wang, J., & Zucker, R.S. (2001). Photolysis-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. Journal of Physiology, 533 (Pt 3), 757–763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, X.J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network. Journal of Neuroscience, 16, 6402–6413.

    CAS  PubMed  Google Scholar 

  • Wilson, R.I., & Nicoll, R.A. (2001). Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature, 410(6828), 1–4.

    Article  Google Scholar 

  • Zachariou, M., Alexander, S.P., Coombes, S., Christodoulou, C. (2013). A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PloS ONE, 8(3), e58,926.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chris Christodoulou and Stephen Coombes for useful comments and discussions. The authors also wish to acknowledge the anonymous reviewers for their helpful comments to the manuscript. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (DIDAKTOR/0609/12) and by a Young Researchers grant from the University of Cyprus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Zachariou.

Additional information

Action Editor: Claudia Clopath

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachariou, M., Thul, R. Cannabinoid-mediated short-term plasticity in hippocampus. J Comput Neurosci 37, 533–547 (2014). https://doi.org/10.1007/s10827-014-0518-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0518-4

Keywords

Navigation