Skip to main content

Advertisement

Log in

Inferring evoked brain connectivity through adaptive perturbation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Inference of functional networks—representing the statistical associations between time series recorded from multiple sensors—has found important applications in neuroscience. However, networksexhibiting time-locked activity between physically independent elements can bias functional connectivity estimates employing passive measurements. Here, a perturbative and adaptive method of inferring network connectivity based on measurement and stimulation—so called “evoked network connectivity” is introduced. This procedure, employing a recursive Bayesian update scheme, allows principled network stimulation given a current network estimate inferred from all previous stimulations and recordings. The method decouples stimulus and detector design from network inference and can be suitably applied to a wide range of clinical and basic neuroscience related problems. The proposed method demonstrates improved accuracy compared to network inference based on passive observation of node dynamics and an increased rate of convergence relative to network estimation employing a naïve stimulation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alarcon, G., Binnie, C.D., Elwes, R.D., Polkey, C.E. (1995). Power spectrum and intracranial eeg patterns at seizure onset in partial epilepsy. Electroencephalography and Clinical Neurophysiology, 94(5), 326–337.

    Article  PubMed  CAS  Google Scholar 

  • Annegers, J.F. (2001). The epidemiology of epilepsy. In The treatment of epilepsy: Principles and practice. Lippincott Williams and Wilkins.

  • Conner, C.R., Ellmore, T.M., DiSano, M.A., Pieters, T.A., Potter, A.W., Tandon, N. (2011). Anatomic and electro-physiologic connectivity of the language system: a combined dti-ccep study. Computers in Biology and Medicine, 41(12), 1100–1109 (Special Issue on Techniques for Measuring Brain Connectivity).

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L.F. (2005). Theoretical neuroscience. MIT Press.

  • Danzl, P., & Moehlis, J. (2008). Spike timing control of oscillatory neuron models using impulsive and quasi-impulsive charge-balanced inputs. In Proceedings of the American control conference (pp. 171–176).

  • de Curtis, M., & Gnatkovsky, V. (2009). Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia, 50(12), 2514–2525.

    Article  PubMed  Google Scholar 

  • Destexhe, A., & Sejnowski, T.J. (2009). The wilson-cowan model, 36 years later. Biological Cybernetics, 101(1), 1–2.

    Article  PubMed  Google Scholar 

  • Eden, U., Frank, L., Barbieri, R., Solo, V., Brown, E. (2004). Dynamic analysis of neural encoding by point process adaptive filtering. Neural Computation, 16(5), 971–998.

    Article  PubMed  Google Scholar 

  • Enatsu, R., Piao, Z., O’Connor, T., Horning, K., Mosher, J., Burgess, R., Bingaman, W., Nair, D. (2012). Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: a cortico-cortical evoked potential study. Clinical Neurophysiology, 123(2), 252–260.

    Article  PubMed  Google Scholar 

  • Engel, J., Wiebe, S., French, J., Sperling, M., Williamson, P., Spencer, D., Gumnit, R., Zahn, C., Westbrook, E., Enos, B. (2003). Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the quality standards subcommittee of the american academy of neurology, in association with the american epilepsy society and the american association of neurological surgeons. Neurology, 60(4), 538–547.

    Article  PubMed  Google Scholar 

  • Fenno, L., Yizhar, O., Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34, 389–412.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R.S., Webber, W.R., Lesser, R.P., Arroyo, S., Uematsu, S. (1992). High-frequency eeg activity at the start of seizures. Journal of Clinical Neurophysiology, 9(3), 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2(1–2), 56–78.

    Article  Google Scholar 

  • Friston, K.J., Harrison, L., Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, F., Gibbs, E., Lennox, W. (2002). Epilepsy: a paroxysmal cerebral dysrhythmia. Epilepsy & Behavior, 3(4), 395–401.

    Article  Google Scholar 

  • Hasegawa, H. (2005). Synchronizations in small-world networks of spiking neurons: diffusive versus sigmoid couplings. Physical Review E, Statistical, Nonlinear and Soft Matter Physics, 72(5 Pt 2), 56139.

    Article  Google Scholar 

  • Juang, J.N. (1994). Applied system identification. PTR Prentice Hall, Inc.

  • Keller, C.J., Bickel, S., Entz, L., Ulbert, I., Milham, M.P., Kelly, C., Mehta, A.D. (2011). Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10308–10313.

    Article  PubMed  CAS  Google Scholar 

  • Keränen, T., Riekkinen, P.J., Sillanpää, M. (1989). Incidence and prevalence of epilepsy in adults in eastern Finland. Epilepsia, 30(4), 413–421.

    Article  PubMed  Google Scholar 

  • Keränen, T., Sillanpää, M., Riekkinen, P.J. (1988). Distribution of seizure types in an epileptic population. Epilepsia, 29(1), 1–7.

    Article  PubMed  Google Scholar 

  • Kramer, M.A., & Cash, S.S. (2012). Epilepsy as a disorder of cortical network organization. The Neuroscientist, 8(4), 360–372.

    Article  Google Scholar 

  • Kringelbach, M.L., Green, A.L., Owen, S.L.F., Schweder, P.M., Aziz, T.Z. (2010). Sing the mind electric—principles of deep brain stimulation. European Journal of Neuroscience, 32(7), 1070–1079.

    Article  PubMed  Google Scholar 

  • Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., Aziz, T.Z. (2007). Translational principles of deep brain stimulation. Nature Reviews Neuroscience, 8(8), 623–635.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, R., Nair, D.R., LaPresto, E., Bingaman, W., Shibasaki, H., Lders, H.O. (2007). Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain, 130(1), 181–197.

    Article  PubMed  Google Scholar 

  • Matsumoto, R., Nair, D.R., LaPresto, E., Najm, I., Bingaman, W., Shibasaki, H., Lders, H.O. (2004). Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain, 127(10), 2316–2330.

    Article  PubMed  Google Scholar 

  • McIntyre, C., & Hahn, P. (2010). Network perspectives on the mechanisms of deep brain stimulation. Neurobiology of Disease, 38(3), 329–337.

    Article  PubMed  Google Scholar 

  • Moro, E., & Lang, A.E. (2006). Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Expert Review of Neurotherapeutics, 6(11), 1695–1705.

    Article  PubMed  Google Scholar 

  • Papoulis, A. (1984). Probability, random variables and stochastic processes with errata sheet. McGraw Hill Higher Education.

  • Perlmutter, J., & Mink, J. (2006). Deep brain stimulation. Annual Review of Neuroscience, 29, 229–257.

    Article  PubMed  CAS  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069.

    Article  PubMed  Google Scholar 

  • Schiff, N.D., Giacino, J.T., Kalmar, K., Victor, J.D., Baker, K., Gerber, M., Fritz, B., Eisenberg, B., Biondi, T., O’Connor, J., Kobylarz, E.J., Farris, S., Machado, A., McCagg, C., Plum, F., Fins, J.J., Rezai, A.R. (2007). Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature, 448(7153), 600–603.

    Article  PubMed  CAS  Google Scholar 

  • Schiff, S.J., Colella, D., Jacyna, G.M., Hughes, E., Creekmore, J.W., Marshall, A., Bozek-Kuzmicki, M., Benke, G., Gaillard, W.D., Conry, J., Weinstein, S.R. (2000). Brain chirps: spectrographic signatures of epileptic seizures. Clinical Neurophysiology, 111(6), 953–958.

    Article  Google Scholar 

  • Schiff, S.J., Sauer, T., Kumar, R., Weinstein, S.L. (2005). Neuronal spatiotemporal pattern discrimination: the dynamical evolution of seizures. NeuroImage, 28(4), 1043–1055.

    Article  PubMed  Google Scholar 

  • Shafi, M.M., Westover, M.B., Fox, M.D., Pascual-Leone, A. (2012). Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. European Journal of Neuroscience, 35(6), 805–825.

    Article  PubMed  Google Scholar 

  • Sparta, D.R., Stamatakis, A.M., Phillips, J.L., Hovelsø, N., van Zessen, R., Stuber, G.D. (2012). Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. National Protocol, 7(1), 12–23.

    Article  CAS  Google Scholar 

  • Sporns, O. (2010). Networks of the Brain. MIT Press.

  • Sunderam, S., Gluckman, B., Reato, D., Bikson, M. (2010). Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy & Behavior, 17(1), 6–22.

    Article  Google Scholar 

  • Valentín, A., Alarcón, G., Honavar, M., Seoane, J.J.G., Selway, R.P., Polkey, C.E., Binnie, C.D. (2005a). Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurology, 4(11), 718–726.

    Article  PubMed  Google Scholar 

  • Valentín, A., Alarcón, G., García-Seoane, J.J., Lacruz, M.E., Nayak, S.D., Honavar, M., Selway, R.P., Binnie, C.D., Polkey, C.E. (2005b). Single-pulse electrical stimulation identifies epileptogenic frontal cortex in the human brain. Neurology, 65(3), 426–435.

    Article  PubMed  Google Scholar 

  • Wang, Z., Kuruog andlu, E., Yang, X., Xu, Y., Huang, T. (2011). Time varying dynamic bayesian network for nonstationary events modeling and online inference. IEEE Transactions on Signal Processing, 59(4), 1553–1568.

    Article  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.

    Article  PubMed  CAS  Google Scholar 

  • Zarrelli, M.M., Beghi, E., Rocca, W.A., Hauser, W.A. (1999). Incidence of epileptic syndromes in Rochester, Minnesota: 1980–1984. Epilepsia, 40(12), 1708–1714.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Benz, H., Bezerianos, A., Acharya, S., Crone, N., Maybhate, A., Zheng, X., Thakor, N. (2010). Connectivity mapping of the human ecog during a motor task with a time-varying dynamic bayesian network. In 2010 annual international conference of the IEEE in engineering in medicine and biology society (EMBC) (pp. 130–133).

Download references

Acknowledgements

K.Q.L. acknowledges support for this research from the Cognitive Rhythms Collaborative, NSF grant DMS-1042134 S.C. acknowledges support from NIH DP1-OD003646. S.C. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. M.A.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Q. Lepage.

Additional information

Action Editor: Liam Paninski

K. Q. Lepage and S. Ching contributed to this work equally.

Appendix: Posterior update equation

Appendix: Posterior update equation

$$ \begin{array}{rll} &&{\kern-6pt} {\rm P\left({\bf e}^{(k)} | {\bf d}^{(k)}, {\bf s}^{(k)}, H_k\right)} \\ &&{\kern6pt} \propto \rm P\left( {\bf d}^{(k)} | {\bf e}^{(k)}, {\bf s}^{(k)}, H_k \right) P\left( {\bf e}^{(k)} | {\bf s}^{(k)}, H_k \right) \ , \\ &&{\kern6pt} = \rm P\left( {\bf d}^{(k)} | {\bf e}^{(k)}, {\bf s}^{(k)} \right) \ P\left( {\bf e}^{(k)} | {\bf s}^{(k)}, H_k \right) \ . \end{array} $$
(22)

The prior probability mass function of the edges, \(\rm P\left( {\bf e}^{(k)} | {\bf s}^{(k)}, H_k \right)\) can be further decomposed by applying the Chapman–Kolmogorov equation.

$$ \begin{array}{rll} &&{\kern-6pt} {\rm P\left( {\bf e}^{(k)} | {\bf s}^{(k)}, H_k \right)}\\ &&{\kern6pt} = {\rm \sum\limits_{{\bf c} \in C} P\left( {\bf e}^{(k)} | {\bf e}^{(k-1)} = {\bf c}, {\bf s}^{(k)}, H_k \right)} \\ &&{\kern18pt} \times {\rm P\left( {\bf e}^{(k-1)} = {\bf c} | {\bf d}^{(k-1)}, {\bf s}^{(k-1)}, H_{k-1} \right)} \ , \\ &&{\kern6pt} = \rm {\sum\limits_{{\bf c} \in C} P\left( {\bf e}^{(k)} | {\bf e}^{(k-1)} = {\bf c} \right)} \\ &&{\kern18pt} \times {\rm P\left( {\bf e}^{(k-1)} = {\bf c} | {\bf d}^{(k-1)}, {\bf s}^{(k-1)}, H_{k-1} \right)} \ , \end{array} $$
(23)

where C is the set of \(\rm 2^{N_{edge}}\) possible networks. Here it is assumed that e (k) is conditionally independent of s (k) and Hk given e (k − 1). Heuristically, this assumption implies that given knowledge of the network connections at stimulus index k − 1, knowledge of the stimulus at the stimulation index k does not provide information about e (k). This is a reasonable assumption since the stimulus at index k is determined from the posterior of e (k − 1).

Without a restriction upon C the sum in Eq. (23) is computationally intractable. As discussed in Section 3, this restriction is attained by assuming that the edges are independent of each other. With this assumption the probability mass functions factor and the prior probability mass function can be written,

$$ \begin{array}{rll} &&{\kern-6pt} {\rm {P,\left( {\bf e}^{(k)} | {\bf s}^{(k)}, H_k \right) }}\\ &&{\kern6pt} = {\rm \prod\limits_{j=1}^{N_{edge}} P\left( ({\bf e}^{(k)} )_j | ({\bf s}^{(k)})_j, H_k \right)} \\ &&{\kern6pt} = \rm \sum\limits_{{\bf c} \in C} \prod\limits_{j=1}^{N_{edge}} P\left( ({\bf e}^{(k)})_j | ({\bf e}^{(k-1)})_j = ({\bf c})_j \right) \\ &&{\kern18pt} \times\, {\rm P\left( ({\bf e}^{(k-1)})_j = ({\bf c})_j | ({\bf d}^{(k-1)})_j, ({\bf s}^{(k-1)})_j, H_{k-1} \right)} \ , \\ &&{\kern6pt} = {\rm \prod\limits_{j=1}^{N_{edge}} \sum\limits_{c_j = 0}^1 P\left( ({\bf e}^{(k)})_j | ({\bf e}^{(k-1)})_j = c_j \right)}\\ &&{\kern18pt} \times {\rm P\left( ({\bf e}^{(k-1)})_j = c_j | ({\bf d}^{(k-1)})_j, ({\bf s}^{(k-1)})_j, H_{k-1} \right)} \ . \end{array} $$
(24)

Combine Eq. (24) with Eq. (22), along with the edge independence assumption to obtain:

$$ \begin{array}{rll} && {\kern-6pt}{\rm \prod\limits_{j=1}^{N_{edge}} P\left( ({\bf e}^{(k)})_j | {\bf d}^{(k)}, {\bf s}^{(k)}, H_k \right)} \\ &&{\kern6pt}\propto {\rm \prod\limits_{j=1}^{N_{edge}}\! P\!\left( ({\bf d}^{(k)})_j | {\bf e}^{(k)}, {\bf s}^{(k)} \right)} \!\times\! {\rm \sum\limits_{c_j = 0}^1 P\!\left( ({\bf e}^{(k)})_j | ({\bf e}^{(k-1)})_j = c_j \right)} \\ &&{\kern18pt}\times {\rm P\left( ({\bf e}^{(k-1)})_j = c_j | ({\bf d}^{(k-1)})_j, ({\bf s}^{(k-1)})_j, H_{k-1} \right)} \ . \end{array} $$
(25)

Thus, recursive update can be computed on an edge by edge basis,

$$ \begin{array}{rll} &&{\kern-6pt}{\rm P\left( ({\bf e}^{(k)})_j | {\bf d}^{(k)}, {\bf s}^{(k)}, H_k \right)} \\ &&{\kern6pt} \propto {\rm P\left( ({\bf d}^{(k)})_j | {\bf e}^{(k)}, {\bf s}^{(k)} \right) } \times {\rm \sum\limits_{c_j = 0}^1 P\left( ({\bf e}^{(k)})_j | ({\bf e}^{(k-1)})_j = c_j \right)} \\ &&{\kern6pt} \times {\rm P\left( ({\bf e}^{(k-1)})_j = c_j | ({\bf d}^{(k-1)})_j, ({\bf s}^{(k-1)})_j, H_{k-1} \right)} \ , \end{array} $$
(26)

for j = 1 , ... , Nedge; greatly simplifying computations. This factoring allows for tractable computational inference, reducing both memory requirements and computation time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepage, K.Q., Ching, S. & Kramer, M.A. Inferring evoked brain connectivity through adaptive perturbation. J Comput Neurosci 34, 303–318 (2013). https://doi.org/10.1007/s10827-012-0422-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0422-8

Keywords

Navigation