Skip to main content
Log in

Effects of noise on models of spiny dendrites

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We study the effects of noise in two models of spiny dendrites. Through the introduction of different types of noise to both the Spike-diffuse-spike (SDS) and Baer–Rinzel (BR) models we investigate the change in behaviour of the travelling wave solution present in both deterministic systems, as noise intensity increases. We show that the speed of wave propagation in both the SDS and BR models respectively differs as the noise intensity in the spine heads increases. In contrast the cable is very robust to noise and as such the speed shows very little variation from the deterministic system. We introduce a space-dependent spine density, ρ(x), to the original Baer–Rinzel model and show how this modified model can mimic behaviour (under influence of noise) of both original systems, through variation of one parameter. We also show that the correlation time and length scales of the noise can enhance propagation of travelling wave solutions where the white noise dominates the underlying signal and produces noise induced phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen, P., Morris R., Amaral, D., Bliss, T., O’Keefe, J. (2007). The hippocampus book. London: Oxford University Press.

    Google Scholar 

  • Baer, S.M., & Rinzel, J. (1991). Propagation of dendritic spikes mediated by excitable spines: a continuum theory. Journal of Neurophysiology, 65(4), 874–890.

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., & Yuste, R. (2002). Spine motility: phenomenology, mechanisms and function. Neuron, 35, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  • Coombes, S., & Bressloff, P.C. (2000). Solitary waves in a model of dendritic cable with active spines. SIAM Journal on Applied Mathematics, 61, 432–453.

    Article  Google Scholar 

  • Coombes, S., & Bressloff, P.C. (2003). Saltatory waves in the spike-diffuse-spike model of active dendritic spines. Physical Review Letters, 91(2), 028102.

    Article  CAS  Google Scholar 

  • Coutts, E.J. (2010). The effect of noise in models of spiny dendrites. Ph.D. thesis, Heriot Watt University.

  • Dan, Y., & Poom M. (2004). Spike timing dependent plasticity of neural circuits. Neuron, 44, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., & Rudolph-Lilith, M. (2012). Neuronal noise. New York: Springer.

    Book  Google Scholar 

  • Doering, C.R., Sargsyan, K.V., Smereka, P. (2005). A numerical method for some stochastic differential equations with multiplicative noise. Physics Letters A, 344, 149–155.

    Article  CAS  Google Scholar 

  • Faisal, A.A., Selen, L.P.J., Wolpert, D.M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9, 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Fox, R.F., & Lu, Y. (1994). Emergent collective behaviour in large numbers of globally coupled independently stochastic ion channels. Physical Review E, 49(8), 3421–3431.

    Article  CAS  Google Scholar 

  • García-Ojalvo, J., & Sancho, J.M. (1999). Noise in spatially extended systems. Berlin: Springer.

    Book  Google Scholar 

  • Gerstner, W., & Kistler, W.M. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Haüsser, M., Spruston, N., Stuart, G.J. (2000). Diversity and dynamics of dendritic signalling. Science, 290(5492), 739.

    Google Scholar 

  • Higham, D.J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525–546.

    Article  Google Scholar 

  • Kasai, H. (2003). Structure stability function relationships of dendritic spines. Trends in Neuroscience, 26(7), 360–368.

    Article  CAS  Google Scholar 

  • Lindner, B., & Longtin, A. (2006). Comment on “Characterization of subthreshold voltage fluctuations in neuronal membrane”, by M. Rudolph and A. Destexhe. Neural Computation, 18(8), 1896–1931.

    Article  PubMed  Google Scholar 

  • Lord, G.J., & Coombes, S. (2002). Traveling waves in the Baer and Rinzel model of spine studded dendritic tissue. Physica D, 161, 1–20.

    CAS  Google Scholar 

  • Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structures, I: neuronal noise sources. Neural Computation, 11, 1797–1829.

    Article  PubMed  CAS  Google Scholar 

  • Mel, B.W. (1994). Information processing in dendritic trees. Neural Computation, 6, 1031–1085.

    Article  Google Scholar 

  • Newhall, K.A., Kovacic, G., Kramer, P.R., Zhou, D., Rangan, A.V., Cai, D. (2010a). Dynamics of current-based poisson driven integrate-and-fire neuronal networks. Communication Math Science, 8(2), 541–600.

    Google Scholar 

  • Newhall, K.A., Kovacic, G., Kramer, P.R., Cai, D. (2010b). Cascade-induced synchrony in stochastically-driven neuronal networks. Physical Review E, 82, 041903.

    Article  Google Scholar 

  • Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Physical Review, 32, 110–113.

    Article  CAS  Google Scholar 

  • P Vetter, A.R., & Haüsser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.

    Google Scholar 

  • Rudolph, M., & Destexhe, A. (2003a). Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Computation, 15(11), 2577–2618.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, M., & Destexhe, A. (2003b). A fast conducting stochastic integrative mode for neocortical neurons in vivo. Journal of Neuroscience, 23, 2466–2476.

    PubMed  CAS  Google Scholar 

  • Scott, A. (2002). Neuroscience: A mathematical primer. Berlin: Springer.

    Google Scholar 

  • Segev, I., & Rall, W. (1998). Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. TINS, 21, 453–460.

    PubMed  CAS  Google Scholar 

  • Shardlow, T. (2005). Numerical simulation of stochastic PDEs for excitable media. Journal of Computational and Applied Mathematics, 175, 429–446.

    Article  Google Scholar 

  • Takahshi, N. (2012). Locally synchronised synaptic inputs. Science, 335(6066), 353–356.

    Article  Google Scholar 

  • Thompson, R.F. (1985). The brain: An introduction to neuroscience. San Francisco: Freeman.

    Google Scholar 

  • Timofeeva, Y., Lord, G.J., Coombes, S. (2006). Spatio-temporal filtering properties of a dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework. Journal of Computational Neuroscience, 21, 293–306.

    Article  PubMed  Google Scholar 

  • Ulinski, P.S., Jones, E.G., Peters, A. (1999). Cerebral cortex. Norwell: Kluwer.

    Book  Google Scholar 

  • Verzi, D., Rheuben, M., Baer, S. (2005). Impact of time dependent changes in spine density and spine shape on the input-output properties of a dendritic branch: a computational study. Journal of Neurophysiology, 93, 2073–2089.

    Article  PubMed  CAS  Google Scholar 

  • Yuste, R., & Denk, W. (1995). Dendritic spines as a basic functional units of neuronal integration. Nature, 375, 682–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma J. Coutts.

Additional information

Action Editor: Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutts, E.J., Lord, G.J. Effects of noise on models of spiny dendrites. J Comput Neurosci 34, 245–257 (2013). https://doi.org/10.1007/s10827-012-0418-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0418-4

Keywords

Navigation