Skip to main content
Log in

Two types of independent bursting mechanisms in inspiratory neurons: an integrative model

Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The network of coupled neurons in the pre-Bötzinger complex (pBC) of the medulla generates a bursting rhythm, which underlies the inspiratory phase of respiration. In some of these neurons, bursting persists even when synaptic coupling in the network is blocked and respiratory rhythmic discharge stops. Bursting in inspiratory neurons has been extensively studied, and two classes of bursting neurons have been identified, with bursting mechanism depends on either persistent sodium current or changes in intracellular Ca2+, respectively. Motivated by experimental evidence from these intrinsically bursting neurons, we present a two-compartment mathematical model of an isolated pBC neuron with two independent bursting mechanisms. Bursting in the somatic compartment is modeled via inactivation of a persistent sodium current, whereas bursting in the dendritic compartment relies on Ca2+ oscillations, which are determined by the neuromodulatory tone. The model explains a number of conflicting experimental results and is able to generate a robust bursting rhythm, over a large range of parameters, with a frequency adjusted by neuromodulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrews, S. B., Leapman, R. D., Landis, D. M., & Reese, T. S. (1988). Activity-dependent accumulation of calcium in Purkinje cell dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 85, 1682–1685.

    Article  PubMed  CAS  Google Scholar 

  • Arata, A., Onimaru, H., & Homma, I. (1998). The adrenergic modulation of firings of respiratory rhythm-generating neurons in medulla-spinal cord preparation from newborn rat. Experimental Brain Research, 119, 399–408.

    Article  CAS  Google Scholar 

  • Bell, H. J., Inoue, T., Shum, K., Luk, C., & Syed, N. I. (2007). Peripheral oxygen-sensing cells directly modulate the output of an identified respiratory central pattern generating neuron. The European Journal of Neuroscience, 25, 3537–3550.

    Article  PubMed  Google Scholar 

  • Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. The Journal of Neuroscience, 18, 9480–9488.

    PubMed  CAS  Google Scholar 

  • Butera, R. J., Jr., Rinzel, J., & Smith, J. C. (1999). Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82, 382–397.

    PubMed  Google Scholar 

  • Cho, H., Kim, M. S., Shim, W. S., Yang, Y. D., Koo, J., & Oh, U. (2003). Calcium-activated cationic channel in rat sensory neurons. The European Journal of Neuroscience, 17, 2630–2638.

    Article  PubMed  Google Scholar 

  • Czarnecki, A., Magloire, V., & Streit, J. (2009). Modulation of intrinsic spiking in spinal cord neurons. Journal of Neurophysiology, 102, 2441–2452.

    Article  PubMed  CAS  Google Scholar 

  • Del Negro, C. A., Johnson, S. M., Butera, R. J., & Smith, J. C. (2001). Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions. Journal of Neurophysiology, 86, 59–74.

    PubMed  Google Scholar 

  • Del Negro, C. A., Morgado-Valle, C., & Feldman, J. L. (2002a). Respiratory rhythm: an emergent network property? Neuron, 34, 821–830.

    Article  Google Scholar 

  • Del Negro, C. A., Koshiya, N., Butera, R. J., Jr., & Smith, J. C. (2002b). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88, 2242–2250.

    Article  Google Scholar 

  • Del Negro, C. A., Morgado-Valle, C., Hayes, J. A., Mackay, D. D., Pace, R. W., Crowder, E. A., et al. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. The Journal of Neuroscience, 25, 446–453.

    Article  PubMed  Google Scholar 

  • Doi, A., & Ramirez, J. M. (2008). Neuromodulation and the orchestration of the respiratory rhythm. Respiratory Physiology & Neurobiology, 164, 96–104.

    Article  CAS  Google Scholar 

  • Elsen, F. P., & Ramirez, J. M. (1998). Calcium currents of rhythmic neurons recorded in the isolated respiratory network of neonatal mice. The Journal of Neuroscience, 18, 10652–10662.

    PubMed  CAS  Google Scholar 

  • Elsen, F. P., & Ramirez, J. M. (2005). Postnatal development differentially affects voltageactivated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre-Botzinger complex. Journal of Neurophysiology, 94, 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Fujii, M., Umezawa, K., & Arata, A. (2004). Dopaminergic modulation on respiratory rhythm in rat brainstem-spinal cord preparation. Neuroscience Research, 50, 355–359.

    Article  PubMed  CAS  Google Scholar 

  • Funk, G. D., Smith, J. C., & Feldman, J. L. (1993). Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids. Journal of Neurophysiology, 70, 1497–1515.

    PubMed  CAS  Google Scholar 

  • Helliwell, R. M., & Large, W. A. (1997). Alpha 1-adrenoceptor activation of a non-selective cation current in rabbit portal vein by 1, 2-diacyl-sn-glycerol. Journal de Physiologie, 499(Pt 2), 417–428.

    CAS  Google Scholar 

  • Herlenius, E., & Lagercrantz, H. (1999). Adenosinergic modulation of respiratory neurones in the neonatal rat brainstem in vitro. Journal de Physiologie, 518(Pt 1), 159–172.

    Article  CAS  Google Scholar 

  • Hilaire, G., Viemari, J. C., Coulon, P., Simonneau, M., & Bevengut, M. (2004). Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respiratory Physiology & Neurobiology, 143, 187–197.

    Article  CAS  Google Scholar 

  • Hill, A. J., Hinton, J. M., Cheng, H., Gao, Z., Bates, D. O., Hancox, J. C., et al. (2006). A TRPC-like non-selective cation current activated by alpha 1-adrenoceptors in rat mesenteric artery smooth muscle cells. Cell Calcium, 40, 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal de Physiologie, 117, 500–544.

    CAS  Google Scholar 

  • Johnson, S. M., Smith, J. C., Funk, G. D., & Feldman, J. L. (1994). Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. Journal of Neurophysiology, 72, 2598–2608.

    PubMed  CAS  Google Scholar 

  • Johnson, R. A., Johnson, S. M., & Mitchell, G. S. (1998). Catecholaminergic modulation of respiratory rhythm in an in vitro turtle brain stem preparation. Journal of Applied Physiology, 85, 105–114.

    PubMed  CAS  Google Scholar 

  • Koizumi, H., & Smith, J. C. (2008). Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. The Journal of Neuroscience, 28, 1773–1785.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K. (1999). Early effects of hypoxia on brain cell function. Croatian Medical Journal, 40, 375–380.

    PubMed  CAS  Google Scholar 

  • Li, Y. X., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. Journal of Theoretical Biology, 166, 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Llona, I., & Eugenin, J. (2005). Central actions of somatostatin in the generation and control of breathing. Biological Research, 38, 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Barneo, J., Ortega-Saenz, P., Pardal, R., Pascual, A., & Piruat, J. I. (2008). Carotid body oxygen sensing. The European Respiratory Journal, 32, 1386–1398.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E. (1988). Modulating a neuronal network. Nature, 335, 296–297.

    Article  PubMed  CAS  Google Scholar 

  • Martin, E. D., Fernandez, M., Perea, G., Pascual, O., Haydon, P. G., Araque, A., et al. (2007). Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia, 55, 36–45.

    Article  PubMed  Google Scholar 

  • Martone, M. E., Zhang, Y., Simpliciano, V. M., Carragher, B. O., & Ellisman, M. H. (1993). Threedimensional visualization of the smooth endoplasmic reticulum in Purkinje cell dendrites. The Journal of Neuroscience, 13, 4636–4646.

    PubMed  CAS  Google Scholar 

  • Mironov, S. L. (2008). Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. Journal de Physiologie, 586, 2277–2291.

    Article  CAS  Google Scholar 

  • Morgado-Valle, C., Beltran-Parrazal, L., DiFranco, M., Vergara, J. L., & Feldman, J. L. (2008). Somatic Ca2+ transients do not contribute to inspiratory drive in preBotzinger Complex neurons. Journal de Physiologie, 586, 4531–4540.

    Article  CAS  Google Scholar 

  • Nieber, K. (1999). Hypoxia and neuronal function under in vitro conditions. Pharmacology & Therapeutics, 82, 71–86.

    Article  CAS  Google Scholar 

  • Onimaru, H., Ballanyi, K., & Richter, D. W. (1996). Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats. Journal de Physiologie, 491(Pt 3), 677–695.

    CAS  Google Scholar 

  • Onimaru, H., Shamoto, A., & Homma, I. (1998). Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat. Pflugers Archiv, 435, 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Pace, R. W., Mackay, D. D., Feldman, J. L., & Del Negro, C. A. (2007). Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. Journal de Physiologie, 582, 113–125.

    Article  CAS  Google Scholar 

  • Pena, F., & Aguileta, M. A. (2007). Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo. Neuroscience Letters, 415, 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Pena, F., Parkis, M. A., Tryba, A. K., & Ramirez, J. M. (2004). Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron, 43, 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Pena, F., & Ramirez, J. M. (2005). Hypoxia-induced changes in neuronal network properties. Molecular Neurobiology, 32, 251–283.

    Article  PubMed  CAS  Google Scholar 

  • Ptak, K., & Hilaire, G. (1999). Central respiratory effects of substance P in neonatal mice: an in vitro study. Neuroscience Letters, 266, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Ptak, K., Yamanishi, T., Aungst, J., Milescu, L. S., Zhang, R., Richerson, G. B., et al. (2009). Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. The Journal of Neuroscience, 29, 3720–3737.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, L. K., Smith, J. C., Koizumi, H., & Butera, R. J. (2007). Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. Journal of Neurophysiology, 97, 1515–1526.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, J. M., Quellmalz, U. J., & Wilken, B. (1997). Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. Journal of Neurophysiology, 78, 383–392.

    PubMed  CAS  Google Scholar 

  • Ramirez, J. M., Quellmalz, U. J., Wilken, B., & Richter, D. W. (1998). The hypoxic response of neurones within the in vitro mammalian respiratory network. Journal de Physiologie, 507(Pt 2), 571–582.

    Article  CAS  Google Scholar 

  • Richter, D. W., Bischoff, A., Anders, K., Bellingham, M., & Windhorst, U. (1991). Response of the medullary respiratory network of the cat to hypoxia. Journal de Physiologie, 443, 231–256.

    CAS  Google Scholar 

  • Rubin, J. E. (2006). Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters. Physical Review E—Statistical, Nonlinear and Soft Matter Physics, 74, 021917.

    Article  Google Scholar 

  • Rubin, J. E. (2008). Emergent bursting in small networks of model conditional pacemakers in the pre-Botzinger complex. Advances in Experimental Medicine and Biology, 605, 119–124.

    Article  PubMed  Google Scholar 

  • Rubin, J. E., Hayes, J. A., Mendenhall, J. L., & Del Negro, C. A. (2009). Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proceedings of the National Academy of Sciences of the United States of America, 106, 2939–2944.

    Article  PubMed  CAS  Google Scholar 

  • Rybak, I. A., Paton, J. F., & Schwaber, J. S. (1997). Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons. J Neurophysiol, 77, 1994–2006.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Ezure, K., Kobayashi, M., Ito, M., Saito, K., & Osawa, M. (2002). A review of functional and structural components of the respiratory center involved in the arousal response. Sleep Medicine, 3(Suppl 2), S71–74.

    Article  PubMed  Google Scholar 

  • Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.

    Article  PubMed  CAS  Google Scholar 

  • Spacek, J., & Harris, K. M. (1997). Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. The Journal of Neuroscience, 17, 190–203.

    PubMed  CAS  Google Scholar 

  • Thoby-Brisson, M., & Ramirez, J. M. (2000). Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. The Journal of Neuroscience, 20, 5858–5866.

    PubMed  CAS  Google Scholar 

  • Thoby-Brisson, M., & Ramirez, J. M. (2001). Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. Journal of Neurophysiology, 86, 104–112.

    PubMed  CAS  Google Scholar 

  • Viemari, J. C., & Ramirez, J. M. (2006). Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. Journal of Neurophysiology, 95, 2070–2082.

    Article  PubMed  CAS  Google Scholar 

  • Viemari, J. C., Bevengut, M., Burnet, H., Coulon, P., Pequignot, J. M., Tiveron, M. C., et al. (2004). Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. The Journal of Neuroscience, 24, 928–937.

    Article  PubMed  CAS  Google Scholar 

  • Villa, A., Sharp, A. H., Racchetti, G., Podini, P., Bole, D. G., Dunn, W. A., et al. (1992). The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport. Neuroscience, 49, 467–477.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, J., & Keizer, J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophysical Journal, 67, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., & Haddad, G. G. (1999). Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain. Neuroscience, 94, 1231–1243.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (R01- HL080886) to R. J. Butera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Butera.

Additional information

Action Editor: Charles Wilson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toporikova, N., Butera, R.J. Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J Comput Neurosci 30, 515–528 (2011). https://doi.org/10.1007/s10827-010-0274-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0274-z

Keywords

Navigation