Skip to main content
Log in

Spin filtering in a \(\updelta \)-magnetic-barrier nanostructure modulated by Rashba and Dresselhaus spin–orbit couplings

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We theoretically investigated the electron-spin transport properties of an antiparallel double \(\updelta \)-magnetic-barrier nanostructure modulated by spin–orbit coupling (SOC), which could be fabricated experimentally by depositing two ferromagnetic stripes with horizontal magnetization on the top and bottom of an InAs/Al\(_{x}\)In\(_{1-x}\)As semiconductor heterostructure. Both Rashba and Dresselhaus SOCs were taken into account, and the transmission coefficient, conductance, and spin polarization calculated analytically by means of the improved transfer matrix method. The electron-spin transport through this nanosystem is found to be strongly dependent on the SOC. The electron-spin polarization is also found to vary with the strength of the SOC, potentially enabling tunable spin filters for use in spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics version for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  2. Žutíc, I., Fabiam, J., Das, S.: Sarma, spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  3. Ohno, Y., Young, D.K., Beschoten, B., Matsukura, F., Ohno, H., Awschalom, D.D.: Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–791 (1999)

    Article  Google Scholar 

  4. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., Molenkamp, L.W.: Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–789 (1999)

    Article  Google Scholar 

  5. Fert, A.: Nobel lecture: origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008)

    Article  Google Scholar 

  6. Koga, T., Nitta, J., Datta, S., Takayanagi, H.: Spin-filter device based on the Rashba Effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett. 88, 126601 (2002)

    Article  Google Scholar 

  7. Gilbert, M.J., Bird, J.P.: Application of split-gate structures as tunable spin filters. Appl. Phys. Lett. 77, 1050–1052 (2000)

    Article  Google Scholar 

  8. Matulis, A., Peeters, F.M., Vasilopoulos, P.: Wave-vector-dependent tunneling through magnetic barriers. Phys. Rev. Lett. 72, 1518–1521 (1994)

    Article  Google Scholar 

  9. Kubrak, V., Rahman, F., Gallagher, B.L., Main, P.C., Henini, M., Marrows, C.H., Howson, M.A.: Magnetoresistance of a two-dimensional electron gas due to a single magnetic barrier and its use for nanomagnetometry. Appl. Phys. Lett. 74, 2507–2509 (1999)

    Article  Google Scholar 

  10. Nogaret, A., Bending, S.J., Henini, M.: Resistance resonance effects through magnetic edge states. Phys. Rev. Lett. 84, 2231–2234 (2000)

    Article  Google Scholar 

  11. Papp, G., Peeters, F.M.: Spin filtering in a magnetic-electric barrier structure. Appl. Phys. Lett. 78, 2184–2186 (2001)

    Article  Google Scholar 

  12. Papp, G., Peeters, F.M.: Spin filtering in a magnetic-electric barrier structure. Appl. Phys. Lett. 79, 3198–3199 (2001)

    Article  Google Scholar 

  13. Carmona, H.A., Geim, A.K., Nogaret, A., Main, P.C., Foster, T.J., Henini, M., Beaumont, S.P., Blamire, M.G.: Two dimensional electrons in a lateral magnetic superlattice. Phys. Rev. Lett. 74, 3009–3012 (1995)

    Article  Google Scholar 

  14. Lu, M.W., Zhang, L.D., Yan, X.H.: Spin polarization of electrons tunneling through magnetic-barrier nanostructures. Phys. Rev. B 66, 224412 (2002). 8P

    Article  Google Scholar 

  15. Li, G.H., Zhou, G.H.: A possible realization of spin filter using a quantum wire with Rashba spin-orbit coupling. J. Appl. Phys. 101, 063704 (2007)

    Article  Google Scholar 

  16. Xu, H.Z., Shi, Z.: Strong wave-vector filtering and nearly 100% spin polarization through resonant tunneling antisymmetrical magnetic structure. Appl. Phys. Lett. 81, 691–693 (2002)

    Article  Google Scholar 

  17. Lu, M.W.: Electron-spin polarization in anti-parallel double delta-magnetic-barrier nanostructures. Appl. Surf. Sci. 252, 1747–1753 (2005)

    Article  Google Scholar 

  18. Lu, J.D.: Bias-tunable electron transport in a magnetic double-barrier nanostructure. Appl. Surf. Sci. 254, 5044–5047 (2008)

    Article  Google Scholar 

  19. Guo, Y., Gu, B.L., Zeng, Z., Yu, J.Z., Kawazoe, Y.: Electron-spin polarization in magnetically modulated quantum structures. Phys. Rev. B 62, 2635–2639 (2000)

    Article  Google Scholar 

  20. Zhai, F., Xu, H.Q., Guo, Y.: Tunable spin polarization in a two-dimensional electron gas modulated by a ferromagnetic metal stripe and a Schottky metal stripe. Phys. Rev. B 70, 085308 (2004)

    Article  Google Scholar 

  21. Papp, G., Vasilopoulos, P., Peeters, F.M.: Spin polarization in a two-dimensional electron gas modulated periodically by ferromagnetic and Schottky metal stripes. Phys. Rev. B 72, 115315 (2005)

    Article  Google Scholar 

  22. Tan, S.G., Jalil, M.B.A., Liew, T., Tan, S.G., Jalil, M.B.A., Liew, T.: Spin current induced by in-plane magnetoelectric \(\delta \)-barriers in a two-dimensional electron gas. Phys. Rev. B 72, 205337 (2005)

    Article  Google Scholar 

  23. El Boudouti, E.H., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L., Kucharczyk, R., Steslicka, M.: Electronic surface states and miniband structure of superlattices with multiple layers per period. Phys. Rev. B 56, 9603–9612 (1997)

    Article  Google Scholar 

  24. Lu, J.D.: Effect of the delta-doping on the electron transport in an antiparallel double delta-magnetic-barrier nanostructure. Appl. Surf. Sci. 255, 7348–7350 (2009)

    Article  Google Scholar 

  25. Lu, J.D.: Spin-dependent electron transport in a magnetic nanostructure with the delta-doping. Phys. Lett. A 374, 2270–2273 (2010)

    Article  Google Scholar 

  26. Lu, J.D.: Ballistic electron transport in a magnetic nanostructure periodically modulated by the delta-doping, L. Yi, X.P. Xia. Phys. E 43, 901–904 (2011)

    Article  Google Scholar 

  27. Lu, M.W., Wang, Z.Y., Cao, X.L., Li, S.: Tunable spin-polarized source by the delta-doping in anisomerous double delta-magnetic-barrier nanostructure. Solid State Commun. 165, 45–48 (2013)

    Article  Google Scholar 

  28. Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, Q.L.: Structurally manipulating electron-spin polarization via delta-doping in a magnetic nanostructure. Appl. Phys. Lett. 102, 022410 (2013)

    Article  Google Scholar 

  29. Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, Q.L.: Controllable electron-spin polarization by delta-doping in a hybrid ferromagnet and semiconductor nanostructure. EPL 101, 47001 (2013)

    Article  Google Scholar 

  30. Rashba, E.I.: Properties of semiconductors with an extremum loop.1. cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960)

    Google Scholar 

  31. Miller, J.B., Zumbühl, D.M., Marcus, C.M., Lyanda-Geller, Y.B., Goldhaber-Gordon, D., Campman, K., Gossard, A.C.: Gate-controllable spin-orbit quantum interference effects in lateral transport. Phys. Rev. Lett. 90, 076807 (2003)

    Article  Google Scholar 

  32. Dresselhaus, G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955)

    Article  MATH  Google Scholar 

  33. Kato, Y., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004)

    Article  Google Scholar 

  34. Jing, Y., Jalil, M.B.A.: Enhanced spin injection and magnetoconductance by controllable Rashba coupling in a ferromagnet/two-dimensional electron gas structure. J. Phys.: Condens. Matter 15, L31–L39 (2003)

    Google Scholar 

  35. Xu, W., Guo, Y.: Rashba and Dresselhause spin-orbit coupling effects on tunneling through two-dimensional magnetic quantum systems. Phys. Lett. A 340, 281–289 (2005)

    Article  Google Scholar 

  36. Vancura, T., Ihn, T., Broderick, S., Ensslin, K., Wegscheider, W., Bichler, M.: Electron transport in a two-dimensional electron gas with magnetic barriers. Phys. Rev. B 62, 5074–5078 (2000)

  37. Büttiker, M.: Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  Google Scholar 

  38. Zhai, F., Xu, H.Q.: Symmetry of spin transport in two-terminal waveguides with a spin-orbital interaction and magnetic field modulations. Phys. Rev. Lett. 94, 246601 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported jointly by the National Natural Science Foundation of China (Grant No. 61464004) and the Guangxi Natural Science Foundation of China (Grant No. 2016GXNSFAA380095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Peng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SY., Yang, SP., Tang, Q. et al. Spin filtering in a \(\updelta \)-magnetic-barrier nanostructure modulated by Rashba and Dresselhaus spin–orbit couplings. J Comput Electron 16, 347–353 (2017). https://doi.org/10.1007/s10825-017-0976-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-0976-9

Keywords

Navigation