Skip to main content
Log in

Analysis of co-tunneling effect in single-electronics simulation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effect of simultaneous tunneling events in single electronics is discussed. Single-electron circuits are classified into two types: small circuits with one island, and large circuits with multi-island systems. Simulations for each type are compared with theoretical and experimental results. Analytic equations for two tunnel junctions in series, as presented by the founders of the phenomenon (Averin and Nazarov in Single Charge Tunneling, pp. 217–248, 1992), and data measured from single-electron transistors are used to verify the co-tunneling current computations for small circuits. For the large circuit type, the results of our Minoufiya University Single Electronics Simulator (MUSES) for the outputs of a single-electron (SE) decimal-to-binary coded decimal (BCD) encoder with 16 islands are compared with the results of the widely accepted nanostructure simulator SIMON. Comparison of the simulation results with measured data for real large single-electron circuits is not possible as such circuits have not yet been manufactured. Thus, to validate these computations, we use a novel multi-island circuit designed specifically to model the emission from a hydrogen atom, comparing the MUSES computations for the photoresponse energies of the equivalent circuit for the hydrogen atom with the measured line intensities of the hydrogen spectrum. Moreover, simulation running times are considered for both co-tunneling and first-order tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim, S.J., Lee, J.J., Kang, H.J., Choi, J.B., Yu, Y.S., Takahashi, Y., Hasko, D.G.: One electron-based smallest flexible logic cell. Appl. Phys. Lett. 101(18), 183101 (2012)

    Article  Google Scholar 

  2. Kano, S., Maeda, K., Tanaka, D., Sakamoto, M., Teranishi, T., Majima, Y.: Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge. J. Appl. Phys. 118(13), 134304 (2015)

    Article  Google Scholar 

  3. Karre, P.S., Bergstrom, P.L., Mallick, G., Karna, S.P.: Room temperature operational single electron transistor fabricated by focused ion beam deposition. J. Appl. Phys. 102(2), 24316 (2007)

    Article  Google Scholar 

  4. Likharev, K.K.: Single-electron devices and their applications. Proc. IEEE 87(4), 606–632 (1999)

    Article  Google Scholar 

  5. Averin, D.V., Likharev, K.K.: Possible coherent oscillations at single-electron tunneling. In: Lubbig, H., Hahlbohm, H.D. (eds.) SQUID’85, p. 197. W. de Gruyter, Berlin (1985)

    Google Scholar 

  6. Averin, D.V., Likharev, K.K.: Coulomb blockade of tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–372 (1986)

    Article  Google Scholar 

  7. Fulton, T.A., Dolan, G.J.: Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59(1), 109–112 (1987)

    Article  Google Scholar 

  8. Wasshuber, C.: Computational Single-Electronics. Springer, Wien (2001)

    Book  MATH  Google Scholar 

  9. Wasshuber, C., Kosina, H.: A single-electron device and circuit simulator. Superlatt. Microstruct. 21(1), 37–42 (1997)

    Article  Google Scholar 

  10. Elabd, A.A., Shalaby, A.T., El-Rabaie, E.M.: Monte Carlo simulation of single electronics based on orthodox theory. Int. J. Nano Devices Sens. Syst. (IJ-Nano) 1(2), 65–76 (2012)

    Google Scholar 

  11. Elabd, A.A., Shalaby, A.T., El-Rabaie, E.M.: Co-tunneling effect on single electron circuits. In: 32nd National Radio Science Conference (NRSC 2015). October University for Modern Sciences and Arts, Egypt, 24–26 Mar 2015

  12. Ingold, G.L., Nazarov, Y.V.: Charge tunneling rates in ultrasmall junctions, Chap. 2. In: Grabert, H., Devoret, M.H. (eds.) Single Charge Tunneling—Coulomb Blockade Phenomena in Nanostructures, pp. 21–107. Plenum and NATO Scientific Affairs Division, New York (1992)

    Chapter  Google Scholar 

  13. Available online http://www.ptb.de/cms/en/research-development/research-on-the-new-si/the-ampere-single-electron-tunneling-set.html. Accessed 31 Dec 2015

  14. Berman, D., et al.: Single-electron transistor as a charge sensor for semiconductor applications. J. Vac. Sci. Technol. B 15(6), 2844–2847 (1997)

    Article  Google Scholar 

  15. Elabd, A.A., El-Rabaie, E.M., Shalaby, A.T.: Analysis of rare events effect on single electronics simulation based on orthodox theory. J. Comput. Electron. 14(2), 604–610 (2015)

    Article  Google Scholar 

  16. Wasshuber, C., Kosina, H., Selberherr, S.: SIMON—a simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. 16, 937–944 (1997)

    Article  Google Scholar 

  17. Averin, D.V., Odintsov, A.A.: Macroscopic quantum tunneling of the electric charge in small tunnel junctions. Phys. Lett. A 140, 251–257 (1989)

    Article  Google Scholar 

  18. Flensberg, K., Odintsov, A.A., Liefrink, F., Teunissen, P.: Towards single-electron metrology. Int. J. Mod. Phys. B 13, 2651 (1999)

    Article  Google Scholar 

  19. Fonseca, L.R.C., Korotkov, A.N., Likharev, K.K., Odintsov, A.A.: A numerical study of the dynamics and statistics of single electron systems. J. Appl. Phys. 78, 3238 (1995)

  20. Jensen, H.D., Martinis, J.M.: Accuracy of the electron pump. Phys. Rev. B 46, 13407 (1992)

  21. Geerligs, L.J., Averin, D.V., Mooij, J.E.: Observation of macroscopic quantum tunneling through the Coulomb energy barrier. Phys. Rev. Lett. 65, 3037–3040 (1990)

    Article  Google Scholar 

  22. Kirihara, M., Kuwamura, N., Taniguchi, K., Hamaguchi, C.: Monte Carlo study of single-electronic devices. In: Extended Abstract of the International Conference on Solid State Devices and Materials, Yokohama, Japan, pp. 328–330 (1994)

  23. Averin, D.V., Nazarov, Yu.V.: Macroscopic quantum tunneling of charge and co-tunneling. In: Grabert, H., Devoret, M.H. (eds.) Single Charge Tunneling, pp. 217–248. Plenum, New York (1992)

  24. van de Haar, R., Hoekstra, J.: SPICE simulation of single-electron electronics compared to measurement results. In: STW—ProRISC—IEEE Workshop, pp. 190–194 (2003)

  25. Yakout, M.A., Rehan, S.E.: Design and simulation of novel single electron coding nano-circuits using room temperature summing inverter gates. In: 29th National Radio Science Conference (NRSC 2012), Cairo University, Egypt, 10–12 Apr 2015

  26. Likharev, K.K., Devyatov, I.A.: Photoresponse and photosensitivity of single-electron tunneling systems. Physica B 194–196, 1341–1342 (1994)

    Google Scholar 

  27. Elabd, A.A., Shalaby, A.T., El-Rabaie, E.M.: An electrical model for atom’s emission and future electronics. Menoufia J. Electron. Eng. Res. 24 (2015). doi:10.13140/RG.2.1.1964.8720

  28. Kramida, A., Ralchenko, Y., Reader, J., NIST ASD Team: NIST Atomic Spectra Database (ver. 5.2). http://physics.nist.gov/asd (1 May 2016). National Institute of Standards and Technology, Gaithersburg, MD (2014)

Download references

Acknowledgments

The authors would like to thank the reviewers for their fruitful comments. They are also grateful to Eng. EL-Saeed EL-Kest for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Elabd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elabd, A.A., EL-Rabaie, ES.M. & Shalaby, A.T. Analysis of co-tunneling effect in single-electronics simulation. J Comput Electron 15, 1351–1360 (2016). https://doi.org/10.1007/s10825-016-0923-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0923-1

Keywords

Navigation