Skip to main content
Log in

Basis adaptation for the stochastic nonlinear Poisson–Boltzmann equation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A basis-adaptation method based on polynomial chaos expansion is used for the stochastic nonlinear Poisson–Boltzmann equation. The uncertainty in this numerical approach is motivated by the quantification of noise and fluctuations in nanoscale field-effect sensors. The method used here takes advantage of the properties of the nonlinear Poisson–Boltzmann equation and shows an exact and efficient approximation of the real solution. Numerical examples are motivated by the quantification of noise and fluctuations in nanowire field-effect sensors as a concrete example. Basis adaptation is validated by comparison with the full solution, and it is compared to optimized multi-level Monte-Carlo method, and the model equations are validated by comparison with experiments. Finally, various design parameters of the field-effect sensors are investigated in order to maximize the signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexander, C., Roy, G., Asenov, A.: Random-dopant-induced drain current variation in nano-MOSFETs: a three-dimensional self-consistent Monte Carlo simulation study using “ab initio” ionized impurity scattering. IEEE Trans. Electron Devices 55(11), 3251–3258 (2008)

    Article  Google Scholar 

  2. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumgartner, S., Heitzinger, C.: Existence and local uniqueness for 3D self-consistent multiscale models for field-effect sensors. Commun. Math. Sci 10(2), 693–716 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumgartner, S., Heitzinger, C.: A one-level FETI method for the drift-diffusion-Poisson system with discontinuities at an interface. J. Comput. Phys. 243, 74–86 (2013). doi:10.1016/j.jcp.2013.02.043

    Article  MathSciNet  Google Scholar 

  5. Baumgartner, S., Heitzinger, C., Vacic, A., Reed, M.A.: Predictive simulations and optimization of nanowire field-effect PSA sensors including screening. Nanotechnology 24(22), 225503 (2013)

    Article  Google Scholar 

  6. Brunet, E., Maier, T., Mutinati, G., Steinhauer, S., Köck, A., Gspan, C., Grogger, W.: Comparison of the gas sensing performance of SnO\(_{2}\) thin film and SnO\(_{2}\) nanowire sensors. Sens. Actuators B 165(1), 110–118 (2012)

    Article  Google Scholar 

  7. Bulyha, A., Heitzinger, C.: An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces. Nanoscale 3(4), 1608–1617 (2011)

    Article  Google Scholar 

  8. Chen, D., Wei, G.W.: Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices. J. Comput. Phys. 229(12), 4431–4460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  Google Scholar 

  11. Doostan, A., Ghanem, R.G., Red-Horse, J.: Stochastic model reduction for chaos representations. Comput. Methods Appl. Mech. Eng. 196(37), 3951–3966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duan, X., Li, Y., Rajan, N.K., Routenberg, D.A., Modis, Y., Reed, M.A.: Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 7(6), 401–407 (2012)

    Article  Google Scholar 

  13. Eldred, M., Burkardt, J.: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In: Proc. 47th AIAA Aerospace Sciences Meeting, vol. 976, pp. 1–20 (2009)

  14. Giles, M.: Improved multilevel Monte Carlo convergence using the Milstein scheme. Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 243–258. Springer, Berlin (2008)

    Google Scholar 

  15. Hahm, J., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)

    Article  Google Scholar 

  16. Hassibi, A., Navid, R., Dutton, R., Lee, T.: Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 96(2), 1074–1082 (2004)

    Article  Google Scholar 

  17. Heitzinger, C., Liu, Y., Mauser, N.J., Ringhofer, C., Dutton, R.W.: Calculation of fluctuations in boundary layers of nanowire field-effect biosensors. J. Comput. Theor. Nanosci. 7(12), 2574–2580 (2010)

    Article  Google Scholar 

  18. Heitzinger, C., Mauser, N.J., Ringhofer, C.: Multiscale modeling of planar and nanowire field-effect biosensors. SIAM J. Appl. Math. 70(5), 1634–1654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heitzinger, C., Ringhofer, C.: Multiscale modeling of fluctuations in stochastic elliptic PDE models of nanosensors. Commun. Math. Sci. 12(3), 401–421 (2014). doi:10.4310/CMS.2014.v12.n3.a1

    Article  MathSciNet  MATH  Google Scholar 

  20. Köck, A., Tischner, A., Maier, T., Kast, M., Edtmaier, C., Gspan, C., Kothleitner, G.: Atmospheric pressure fabrication of SnO\(_{2}\)-nanowires for highly sensitive CO and CH\(_{4}\) detection. Sens. Actuators B 138(1), 160–167 (2009)

    Article  Google Scholar 

  21. Kulkarni, G.S., Zhong, Z.: Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett. 12(2), 719–723 (2012)

    Article  Google Scholar 

  22. Laborde, C., Pittino, F., Verhoeven, H., Lemay, S., Selmi, L., Jongsma, M., Widdershoven, F.: Real-time imaging of microparticles and living cells with nanocapacitor arrays. Nat. Nanotechnol. 10, 791–795 (2015)

    Article  Google Scholar 

  23. Lee, A., Brown, A.R., Asenov, A., Roy, S.: Random telegraph signal noise simulation of decanano MOSFETs subject to atomic scale structure variation. Superlattices Microstruct. 34(3), 293–300 (2003)

    Article  Google Scholar 

  24. Liu, Y., Lilja, K., Heitzinger, C., Dutton, R.W.: Overcoming the screening-induced performance limits of nanowire biosensors: a simulation study on the effect of electro-diffusion flow. In: IEDM 2008 Technical Digest, pp. 491–494. San Francisco, CA (2008). doi:10.1109/IEDM.2008.4796733

  25. Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor. Springer, Wien (1990)

    MATH  Google Scholar 

  26. Patolsky, F., Timko, B.P., Yu, G., Fang, Y., Greytak, A.B., Zheng, G., Lieber, C.M.: Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)

    Article  Google Scholar 

  27. Patolsky, F., Zheng, G., Lieber, C.M.: Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)

    Article  Google Scholar 

  28. Pittino, F., Selmi, L.: Use and comparative assessment of the CVFEM method for Poisson–Boltzmann and Poisson–Nernst–Planck three dimensional simulations of impedimetric nano-biosensors operated in the DC and AC small signal regimes. Comput. Methods Appl. Mech. Eng. 278, 902–923 (2014)

    Article  MathSciNet  Google Scholar 

  29. Pittino, F., Palestri, P., Scarbolo, P., Esseni, D., Selmi, L.: Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors. Solid-State Electron. 98, 63–69 (2014)

    Article  Google Scholar 

  30. Pittino, F., Passerini, F., Selmi, L., Widdershoven, F.: Numerical simulation of the position and orientation effects on the impedance response of nanoelectrode array biosensors to DNA and PNA strands. Microelectron. J. 45(12), 1695–1700 (2014)

    Article  Google Scholar 

  31. Ponzoni, A., Comini, E., Sberveglieri, G., Zhou, J., Deng, S.Z., Xu, N.S., Ding, Y., Wang, Z.L.: Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 88(20), 203,101 (2006)

    Article  Google Scholar 

  32. Punzet, M., Baurecht, D., Varga, F., Karlic, H., Heitzinger, C.: Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy. Nanoscale 4(7), 2431–2438 (2012)

    Article  Google Scholar 

  33. Rajan, N.K., Routenberg, D.A., Reed, M.A.: Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. Appl. Phys. Lett. 98(26), 264,107 (2011)

    Article  Google Scholar 

  34. Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)

    Article  Google Scholar 

  35. Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., Fahmy, T.M.: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010)

    Article  Google Scholar 

  36. Tipireddy, R., Ghanem, R.: Basis adaptation in homogeneous chaos spaces. J. Comput. Phys. 259, 304–317 (2014)

    Article  MathSciNet  Google Scholar 

  37. Tulzer, G., Baumgartner, S., Brunet, E., Mutinati, G.C., Steinhauer, S., Köck, A., Barbano, P.E., Heitzinger, C.: Kinetic parameter estimation and fluctuation analysis of CO at SnO\(_{2}\) single nanowires. Nanotechnology 24(31), 315501 (2013)

    Article  Google Scholar 

  38. Tulzer, G., Heitzinger, C.: Fluctuations due to association and dissociation processes at nanowire-biosensor surfaces and their optimal design. Nanotechnology 26(2), 025502 (2015). doi:10.1088/0957-4484/26/2/025502

  39. Uren, M., Day, D., Kirton, M.: 1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 47(11), 1195–1197 (1985)

    Article  Google Scholar 

  40. Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    Article  Google Scholar 

  41. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support by FWF (Austrian Science Fund) START Project No. Y660 PDE Models for Nanotechnology. The authors also would like to appreciate Prof. Roger Ghanem (University of Southern California) for useful discussions about polynomial chaos expansion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirreza Khodadadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadian, A., Heitzinger, C. Basis adaptation for the stochastic nonlinear Poisson–Boltzmann equation. J Comput Electron 15, 1393–1406 (2016). https://doi.org/10.1007/s10825-016-0922-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0922-2

Keywords

Navigation