Skip to main content
Log in

Structural dependence of the transferred charge density in triboelectric nanogenerators: analytical and numerical study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effect of the structure in a simple contact-mode triboelectric nanogenerator (TENG) was analyzed in this paper. Using the results of the finite-element method, a relationship between the transferred charges on the bottom and one side of the rectangular rod is derived. As the side of the top rectangular surface of the rod is increased, the amount of the transferred surface charge also increases. The numerical results presented here can serve as a rational guide for the practical design of the structure in TENG-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cha, S.N., Seo, J.S., Kim, S.M., Kim, H.J., Park, Y.J., Kim, S.W., Kim, J.M.: Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 22, 4726–4730 (2010)

    Article  Google Scholar 

  2. Horn, R.G., Smith, D.T., Grabbe, A.: Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions. Nature 366, 442–443 (1993)

    Article  Google Scholar 

  3. Horn, R.G., Smith, D.T.: Contact electrification and adhesion between dissimilar materials. Science 256, 362–364 (1992)

    Article  Google Scholar 

  4. McCarty, L.S., Whitesides, G.M.: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008)

    Article  Google Scholar 

  5. Baytekin, H.T., Patashinski, A.Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B.A.: The mosaic of surface charge in contact electrification. Science 333, 308–312 (2011)

    Article  Google Scholar 

  6. Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., Wang, Z.L.: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano. 7, 7342–7351 (2013)

    Article  Google Scholar 

  7. Wang, Z.L.: Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. ACS Nano. 7, 9533–9557 (2013)

    Article  Google Scholar 

  8. Niu, S., Wang, X., Yi, F., Zhou, Y.S., Wang, Z.L.: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015)

  9. Fan, F.R., Tian, Z.Q., Lin Wang, Z.: Flexible triboelectric generator. Nano Energy. 1, 328–334 (2012)

    Article  Google Scholar 

  10. Zhu, G., Pan, C., Guo, W., Chen, C.Y., Zhou, Y., Yu, R., Wang, Z.L.: Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)

    Article  Google Scholar 

  11. Wang, S., Lin, L., Wang, Z.L.: Nanoscale-triboelectric-effect enabled energy conversion for sustainable powering of portable electronics. Nano Lett. 12, 6339–6346 (2012)

    Article  Google Scholar 

  12. Zhang, X.S., Han, M.Di, Wang, R.X., Zhu, F.Y., Li, Z.H., Wang, W., Zhang, H.X.: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168–1172 (2013)

    Article  Google Scholar 

  13. Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., Wang, Z.L., Al, L.I.N.E.T.: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano. 7, 8266–8274 (2013)

    Article  Google Scholar 

  14. Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., Wang, Z.L.: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013)

    Article  Google Scholar 

  15. Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., Wang, Z.L.: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916–2923 (2013)

    Article  Google Scholar 

  16. Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y.S., Jing, Q., Pan, C.: Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13, 2282–2289 (2013)

    Article  Google Scholar 

  17. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., Wang, Z.L.: Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25, 6184–6193 (2013)

    Article  Google Scholar 

  18. Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y.S., Hu, Y., Wang, Z.L.: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Computational Energy Science, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeongMin Kim.

Additional information

SeongMin Kim, Jaewook Ha: Equal Contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Ha, J. & Kim, JB. Structural dependence of the transferred charge density in triboelectric nanogenerators: analytical and numerical study. J Comput Electron 15, 1593–1597 (2016). https://doi.org/10.1007/s10825-016-0882-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0882-6

Keywords

Navigation