Skip to main content
Log in

Comparative performance analysis of InGaN/GaN multi-quantum-well light-emitting diodes with p- and n-type step-doped barriers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The performance of InGaN/GaN light-emitting diodes (LEDs) with multiple-quantum-well barriers formed from alternating p- and undoped regions is compared with that of reference devices having similar epilayer structure but with barriers formed from alternating n- and undoped regions. Simulations verify that p-type step-doping in the quantum barriers is more effective in reducing the polarization-induced electric field and lowering the energy barrier for hole transport as well as increasing the barrier height of the conduction band to confine electrons, thereby enhancing the radiative recombination rate compared with n-type step doping in the quantum barriers. This profile also increments hole injection and provides a more uniform carrier distribution across the multiple quantum wells. According to the simulation results, when using the alternating stepwise doping profile in the barrier regions in the proposed structure, the internal quantum efficiency is remarkably improved, offering dual advantages of a homogeneous hole distribution due to the undoped region and a reduced valence-band barrier height due to the p-doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shen, Y.C., Mueller, G.O., Watanabe, S., Gardne, N.F., Munkholm, A., Krames, M.R.: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101-1–141101-3 (2007)

    Google Scholar 

  2. Chow, W., Crawford, M.H., Tsao, J.Y., Kneissl, M.: Internal efficiency of InGaN light-emitting diodes: beyond a quasi-equilibrium model. Appl. Phys. Lett. 97, 121105-1–121105-3 (2010)

    Google Scholar 

  3. Schubert, M.F., Xu, J., Kim, J.K., Schubert, E.F., Kim, M.H., Yoon, S., Lee, S.M., Sone, C., Sakong, T., Park, Y.: Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 93, 041102 (2008)

    Article  Google Scholar 

  4. Rozhansky, I.V., Zakheim, D.A.: Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. Phys. Status Solidi A. 204, 227 (2007)

    Article  Google Scholar 

  5. Kim, M.H., Schubert, M.F., Dai, Q., Kim, J.K., Schubert, E.F., Piprek, J., Park, Y.: Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507-1–183507-3 (2007)

    Google Scholar 

  6. Efremov, A.A., Bochkareva, N.I., Gorbunov, R.I., Lavrinovich, D.A., Rebane, Y.T., Tarkhin, D.V., Shreter, Y.G.: Effect of the Joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors 40, 605–610 (2006)

    Article  Google Scholar 

  7. Ryu, H.Y., Shim, J.I.: Effect of current spreading on the efficiency droop of InGaN light-emitting diodes. Opt. Express 19, 2886–2894 (2011)

    Article  Google Scholar 

  8. Xie, J., Ni, X., Fan, Q., Shimada, R., Ozgur, U.: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with \(p\)-doped quantum well barriers. Appl. Phys. Lett. 93, 121107 (2008)

  9. David, A., Grundmann, M.J., Kaeding, J.F., Gardner, N.F., Mihopoulos, T.G., Krames, M.R.: Carrier distribution in (0001) InGaN/Ga\(N\) multiple quantum well light-emitting diodes. Appl. Phys. Lett. 92, 053502 (2008)

    Article  Google Scholar 

  10. Tsai, M.C., Yen, S.H., Kuo, Y.K.: Carrier transportation and internal quantum efficiency of blue InGaN LED with p-doped barriers. IEEE Photon. Technol. Lett. 22, 374 (2010)

    Article  Google Scholar 

  11. Arif, R.A., Ee, Y.K., Tansu, N.: Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl. Phys. Lett. 91, 091110-1–091110-3 (2007)

    Article  Google Scholar 

  12. Arif, R.A., Zhao, H.P., Ee, Y.K., Tansu, N.: Spontaneous emission and characteristics of staggered InGaN quantum-well light-emitting diodes. IEEE J. Quantum Electron. 44, 573–580 (2008)

    Article  Google Scholar 

  13. Zhao, H.P., Liu, G.Y., Zhang, J., Poplawsky, J.D., Dierolf, V., Tansu, N.: Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 19, A991–A1007 (2011)

    Article  Google Scholar 

  14. Zhao, H.P., Tansu, N.: Optical gain characteristics of staggered InGaN quantum wells lasers. J. Appl. Phys. 107, 113110-1–113110-12 (2010)

    Google Scholar 

  15. Shim, J.I., Hyunsung, K., Shin, D.S., Yoo, H.Y.: An explanation of efficiency droop in InGaN-based light emitting diodes: saturated radiative recombination rate at randomly distributed In-rich active areas. J. Korean Phys. Soc. 58(3), 503–508 (2011)

    Article  Google Scholar 

  16. Lee, Y.J., Chen, C.H., Lee, C.J.: Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells. IEEE Photon. Technol. Lett. 22, 1506–1508 (2010)

    Article  Google Scholar 

  17. McBride, P.M., Yan, Q., Walle, C.G.V.D.: Effects of In profile on simulation of InGaN/GaN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 105, 083507 (2014)

    Article  Google Scholar 

  18. Mishra, P., Janjua, B., Ng, K.T., Shen, C., Salhi, A., Alyamani, A., El-Desouki, M., Ooi, B.S.: Achieving uniform carrier distribution in MBE-grown compositionally graded InGaN multiple-quantum-well LEDs. IEEE Photon. J. 7, 3 (2015)

    Article  Google Scholar 

  19. Chung, H.Y., Woo, K.Y., Kim, S.J., Kim, T.G.: Improvement of blue InGaN/GaN light-emitting diodes with graded indium composition wells and barriers. Opt. Commun. 331, 282–286 (2014)

    Article  Google Scholar 

  20. Wang, C.H., Chang, S.P., Chang, W.T., Li, J.C., Lu, Y.S., Li, Z.Y., Yang, H.C., Kuo, H.C., Lu, T.C., Wang, S.C.: Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells. Appl. Phys. Lett. 97, 181101-1–181101-3 (2010)

    Google Scholar 

  21. Maur, M.A.D.: Multiscale approaches for the simulation of GaN based LEDs. J. Comput. Electron. 114(2), 398–408 (2015)

    Article  Google Scholar 

  22. Tian, W., Zhang, J., Wang, Z., Wu, F., Li, Y., Chen, S., Xu, J., Dai, J., Fang, Y., Wu, Z., Chen, C.: Efficiency improvement using thickness-chirped barriers in blue InGaN multiple quantum wells light emitting diodes. IEEE Photon. J. 5, 6 (2013)

    Article  Google Scholar 

  23. Zhang, Z.H., Tan, S.T., Ju, Z., Liu, W., Ji, Y., Kyaw, Z., Dikme, Y., Sun, X.W., Demir, H.V.: On the effect of step doped quantum barriers in InGaN/GaN LEDs. J. Disp. Technol. 9, 226 (2013)

    Article  Google Scholar 

  24. SiLENSe Physics Summary, version 5.4, Semiconductor Technology Research, Inc

Download references

Acknowledgments

The authors gratefully acknowledge the Director, CEERI, Pilani for his encouragement in this work as well as all ODG members for their help and cooperation. This work is supported by the Council of Scientific and Industrial Research (CSIR) through sponsorship of the TAP-SUN programme through project NWP-55.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumitra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Utpalla, P., Pal, S. et al. Comparative performance analysis of InGaN/GaN multi-quantum-well light-emitting diodes with p- and n-type step-doped barriers. J Comput Electron 15, 1040–1045 (2016). https://doi.org/10.1007/s10825-016-0838-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0838-x

Keywords

Navigation