Skip to main content
Log in

Energy gap renormalization and diamagnetic susceptibility in quantum wires with different cross-sectional shape

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this study, we investigate the effect of the cross-sectional shape on the energy gap renormalization and diamagnetic susceptibility in various quantum wires. To this end, we consider quantum wires with different cross-sectional shapes such as circular, square, hexagonal, and triangular. First, we employ the finite-element method and Arnoldi algorithm to solve the Schrödinger equation. Then, we calculate the energy levels, wavefunctions, binding energy, energy gap renormalization, and diamagnetic susceptibility. Our numerical results show that the binding energy decreases when the cross-sectional area is increased for all the quantum wires. Moreover, it is inferred that the cross-sectional shape is not important for large cross-sectional area when calculating the binding energy. Indeed, the main parameter is the cross-sectional area rather than the length of a side. The energy gap renormalization decreases with increasing cross-sectional area, regardless of the impurity concentration. We observe that the highest and lowest energy gap renormalization correspond to triangular and circular quantum wires, respectively. The absolute value of the diamagnetic susceptibility increases with increasing cross-sectional area for all the quantum wires investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: study of nonlinear optical properties. Ann. Phys. 524, 327–337 (2012)

    Article  MATH  Google Scholar 

  2. Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)

    Article  Google Scholar 

  3. Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., De Franceschi, S.: Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12, 3074–3079 (2012)

    Article  Google Scholar 

  4. Vizcaino, J.L.P., Nunez, C.G.A.: Fast, effective manipulation of nanowires for electronic devices. SPIE Newsroom (2013). doi:10.1117/2.1201312.005260

    Google Scholar 

  5. Garcia, J.C., Justo, J.F.: Twisted ultrathin silicon nanowires: a possible torsion electromechanical nanodevice. Europhys. Lett. 108, 36006–36011 (2014)

    Article  Google Scholar 

  6. Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F.: Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12, 5245–5254 (2012)

    Article  Google Scholar 

  7. Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005)

    Google Scholar 

  8. Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., Willaime, F.: Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)

    Article  Google Scholar 

  9. Khordad, R., Bahramiyan, H.: Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124320 (2014)

    Article  Google Scholar 

  10. Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H., Sokmen, I.: Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. J. Lumin. 143, 304–313 (2013)

    Article  Google Scholar 

  11. Khordad, R.: Refractive index change and absorption coefficient of T shaped quantum wires: comparing with experimental results. Opt. Quant. Electron. 46, 283–293 (2014)

    Article  MathSciNet  Google Scholar 

  12. Khordad, R., Bahramiyan, H.: The energy levels, binding energy and third harmonic generation of a hexagon-shaped quantum wire. Mod. Phys. Lett. B 29, 1550078–1550092 (2015)

    Article  Google Scholar 

  13. Mohan, P., Motohisa, J., Fukui, T.: Fabrication of core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105–133110 (2006)

    Article  Google Scholar 

  14. Khordad, R.: Second and third-harmonic generation of parallelogram quantum wires: electric field. Indian J. Phys. 88, 275–281 (2014)

    Article  Google Scholar 

  15. Makhanets, O.M., Gutsul, V.I., Tsiupak, N.R., Voitsekhivska, O.M.: Exciton spectrum in multi-shell hexagonal semiconductor nanotube. Condens. Matter Phys. 15, 33704–33712 (2012)

    Article  Google Scholar 

  16. Khordad, R., Bahramiyan, H.: Strain effect on the absorption threshold energy of silicon circular nanowires. Commun. Theor. Phys. 65, 87–91 (2016)

    Article  Google Scholar 

  17. Sakaki, H.: Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements. Surf. Sci. 267, 623–629 (1992)

    Article  Google Scholar 

  18. Rurali, R.: Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–450 (2010)

    Article  Google Scholar 

  19. Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1328–1342 (2002)

    Article  Google Scholar 

  20. Ermolaev, A.M., Rashba, G.I.: Impurity states of electrons in quantum dots in external magnetic fields. Eur. Phys. J. 66, 223–226 (2008)

    Article  MATH  Google Scholar 

  21. Hayrapetyan, D.B., Kazaryan, E.M., Tevosyan, HKh: Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. 49, 119–122 (2014)

    Article  Google Scholar 

  22. Bastard, G.: Hydrogenic impurity states in a quantum well: a simple model. Phys. Rev. B 24, 4714–4718 (1981)

    Article  Google Scholar 

  23. Khordad, R., Bahramiyan, H.: Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402–20408 (2014)

    Article  Google Scholar 

  24. Coden, D.S.A., Romero, R.H., Ferrón, A., Gomez, S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B 46, 065501–065502 (2013)

    Article  Google Scholar 

  25. Yu, E.: Perlin, Nonlinear susceptibilities of quantum dots. Opt. Spectrosc. 88, 439–445 (2008)

    Google Scholar 

  26. Rezaei, G., Azami, S.M., Vaseghi, B.: Electronic states and nonlinear optical properties of a two-dimensional hexagonal quantum dot: effects of impurity, geometrical size and confinement potential. Phys. Stat. Sol. B 249, 1459–1464 (2012)

    Article  Google Scholar 

  27. Al-Hayek, I., Sandouqa, A.S.: Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlatt. Microstruc. 85, 216–225 (2015)

  28. Baghramyan, H.M., Barseghyan, M.G., Duque, C.A., Kirakosyan, A.A.: Binding energy of hydrogenic donor impurity in \(\text{GaAs}/\text{ Ga }_{1-x} \text{ Al }_{x} \text{ AsGaAs }/\text{ Ga1-xAlxAs }\) concentric double quantum rings: effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. Phys. E 48, 164–170(2013)

  29. Zhao, Z.R., Liang, X.X.: Phonon effect on binding energies of impurity states in cylindrical quantum wires of polar semiconductors under an electric field. Phys. E 40, 3086–3091 (2008)

    Article  Google Scholar 

  30. Safarpour, Gh, Barati, M., Zamani, A., Niknam, E.: Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire. J. Lumin. 145, 990–996 (2014)

    Article  Google Scholar 

  31. Bryant, G.W.: Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29, 6632–6639 (1984)

    Article  Google Scholar 

  32. Brown, J.W., Spector, H.N.: Hydrogen impurities in quantum well wires. J. Appl. Phys. 59, 1179–1185 (1986)

    Article  Google Scholar 

  33. Hsieh, C.Y.: Off-center donor impurity in multilayered quantum wires. J. Appl. Phys. 91, 2326–2331 (2002)

    Article  Google Scholar 

  34. Nithiananthi, P., Jayakumar, K.: Effect of \(\Gamma \)-X band crossover and impurity location on the diamagnetic susceptibility of a donor in a quantum well. Solid State Commun. 138, 305–308 (2006)

    Article  Google Scholar 

  35. Kilicarslan, E., Sakiroglu, S., Koksal, M., Sari, H., Sokmen, I.: The effects of the magnetic field and dielectric screening on the diamagnetic susceptibility of a donor in a quantum well with anisotropic effective mass. Phys. E 42, 1531–1535 (2010)

    Article  Google Scholar 

  36. Akbas, H., Bulut, P., Dane, C., Skarlatos, Y.: The diamagnetic susceptibility of hydrogenic donor in two-dimensional semiconductors with anisotropic effective mass of carriers. Superlatt. Microstruc. 51, 455–461 (2012)

    Article  Google Scholar 

  37. Mmadi, A., Rahmani, K., Zorkani, I., Jorio, A.: Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots. Superlatt. Microstruc. 57, 27–36 (2013)

    Article  Google Scholar 

  38. Khordad, R.: Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove \(\text{ GaAs }/\text{ Ga }_{1-x} \text{ Al }_{x}\text{ As }\) quantum wire. Eur. Phys. J. 78, 399–403 (2010)

    Article  Google Scholar 

  39. Khordad, R., Bahramiyan, H.: Absorption threshold frequency of silicon nanowires: Effect of cross section shape. Opt. Commun. 334, 84–89 (2015)

    Article  Google Scholar 

  40. Brenner, S.C., Scott, L.R.: The mathematical theory of the finite element methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  41. Reddy, J.N.: An introduction to the finite element method, 2nd edn. McGraw-Hill Inc, New York (1993)

    Google Scholar 

  42. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  43. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17 (1951)

    MathSciNet  MATH  Google Scholar 

  44. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1998)

    MATH  Google Scholar 

  45. http://www.mathworks.com/help/pdf_doc/pde/pde.pdf

Download references

Acknowledgments

Z.A. wishes to acknowledge the Natural Science Foundation of Jiangsu Province (grant no. BK20150964) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Appendix

Appendix

To construct an approximate solution to Eq. (4), introduce the domain partition \({\Omega }={\Omega }_1 \cup {\Omega }_2\), such that \({\Omega }= {\prod }_{i=1}^n V_i\). Each element \(V_i\), \(i=1,2,\cdots ,n\) is a triangle with three vertices. The set of basis functions consists of continuous, piecewise-linear functions on \({\Omega }\) vanishing on the boundary \(\partial {\Omega }\). Let \(P_1, P_2, \cdots , P_n\) be the interior vertices, that is, those that do not lie on \(\partial {\Omega }\). Then, the set of basis function is \(\left\{ {\phi _1 ,\phi _2 ,\cdots } \right\} \), where

$$\begin{aligned} \phi _i \left( {P_j } \right) =\left\{ {{\begin{array}{l@{\quad }l} 1&{} {i=j} \\ 0&{} {i\ne j} \\ \end{array}} \qquad i,j=1,2,\cdots \cdots , m}. \right. \end{aligned}$$
(6)

The approximate solution \(\psi \) can be represented as

$$\begin{aligned} \psi = \mathop \sum \limits _{j=1}^m c_j \phi _j , \quad \psi \left( {P_j} \right) = c_j, \quad j=1,2,\cdots , m. \end{aligned}$$
(7)

Inserting this \(\psi \) into Eq. (4), multiplying Eq. (4) by \(\phi _i\), and integrating by parts, one obtains

$$\begin{aligned}&\frac{\hbar ^{2}}{2m_1 }\sum \limits _{j=1}^m \int \limits _{{\Omega }_1} c_j \nabla \phi _j \nabla \phi _i \, \mathrm {d} x \, \mathrm {d} y+\frac{\hbar ^{2}}{2m_2 } \mathop \sum \limits _{j=1}^m \int \limits _{{\Omega }_2} c_j \nabla \phi _j \nabla \phi _i \, \mathrm {d} x \, \mathrm {d} y \nonumber \\&\qquad + \mathop \sum \limits _{j=1}^m c_j \left[ \int \limits _{{\Omega }_1} \left( {V_1 +V^\mathrm{int}} \right) \phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y \right. \nonumber \\&\qquad \left. + \int \limits _{{\Omega }_2} (V_2 +V^\mathrm{int})\phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y \right] \nonumber \\&\quad = E \mathop \sum \limits _{j=1}^m \int \limits _{\Omega } c_j \phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y. \end{aligned}$$
(8)

Using the following notations:

$$\begin{aligned} K_{ij}= & {} \frac{\hbar ^{2}}{2m_1 } \int \limits _{{\Omega }_1} \nabla \phi _j \nabla \phi _i \, \mathrm {d} x \, \mathrm {d} y+ \int \limits _{{\Omega }_1} V_1 \phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y \nonumber \\&+ \frac{\hbar ^{2}}{2m_2 } \int \limits _{{\Omega }_2} \nabla \phi _j \nabla \phi _i \, \mathrm {d} x \, \mathrm {d} y+ \int \limits _{{\Omega }_2} V_2 \phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y \nonumber \\&+\int \limits _{\Omega } V^\mathrm{int}\phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y \end{aligned}$$
(9)

and

$$\begin{aligned} M_{ij} = \int \limits _{\Omega } \phi _j \phi _i \, \mathrm {d} x \, \mathrm {d} y, \quad i,j=1,2,\cdots ,m, \end{aligned}$$
(10)

one obtains the generalized eigenvalue equation \(KX=EMX\), where K is the stiffness matrix, M is the mass matrix, and \(X=\left[ {c_1 ,c_2 ,\cdots ,c_m } \right] ^\mathrm{T}\) is the eigenvector corresponding to eigenvalue E. The generalized eigenvalue equation \(KX=EMX\) is now solved by the Arnoldi procedure. In the following, we briefly present the Arnoldi algorithm in more detail. The Arnoldi method turns out to be one of the most successful algorithms for determining eigenvalues of large matrices [43, 45]. In numerical linear algebra, the Arnoldi method is an eigenvalue algorithm and an important example of an iterative procedure. The Arnoldi method finds the eigenvalues of general matrices. Here, we apply the algorithm to solve the general eigenvalue problem \(KX=EMX\) derived from the finite-element discretization.

First, a shift \(\sigma \) is determined if eigenvalues in the vicinity of a fixed parameter \(\sigma \) are of interest. Since both K and M are positive, it is natural to take \(\sigma =0\) and obtain the smallest eigenvalues. In other cases, one takes \(\sigma \) near the eigenvalues which are sought. One subtracts \(\sigma M\) from the eigenvalue equation to yield

$$\begin{aligned} \left( {K-\sigma M} \right) X=\left( {E-\sigma } \right) MX. \end{aligned}$$
(11)

This problem can be transformed into the following standard eigenproblem:

$$\begin{aligned} AX= {\Theta } X, \end{aligned}$$
(12)

where

$$\begin{aligned} A = \left( {K-\sigma M} \right) ^{-1}M, \quad \hbox {and } \qquad {\Theta } = \frac{1}{E-\sigma }. \end{aligned}$$
(13)

The largest eigenvalues \({\Theta }_i\) of the transformed matrix A now correspond to the eigenvalues \(E_i =\sigma + \frac{1}{{\Theta }_i}\) of the original problem \(KX=EMX\) closest to \(\sigma \).

The Arnoldi algorithm computes an orthonormal basis V where A is represented by a tridiagonal matrix H, \(AV_j =V_j H_{jj} +E_j\), such that \(V_j\) and \(E_j\) are matrices of size \(m\times j\) and \(H_{jj}\) is a matrix of size \(j\times j\). The subscripts mean that \(V_j\) and \(E_j\) have j columns and \(H_{jj}\) has j rows and columns. When no subscripts are used, the vectors and matrices have size m.

The basis V is built one column \(v_j\) at a time. The first vector \(v_1\) is chosen at random. In step j, the first j vectors are already computed and form the \(m\times j\) matrix \(V_j\). The next vector \(v_{j+1}\) is calculated by first letting A operate on the newest vector \(v_j\), then making the result orthogonal to all previous vectors.

This is formulated as \(h_{j+1,j} v_{j+1} =Av_j -V_j h_j\), where the column vector \(h_j\) consists of the Gram–Schmidt coefficients and \(h_{j+1,j}\) is the normalization factor that gives \(v_{j+1}\) unit length. Putting the corresponding relations from previous steps in front of this, one gets

$$\begin{aligned} AV_j =V_j H_{jj} +v_{j+1} h_{j+1,j} e_j^\mathrm{T} , \end{aligned}$$
(14)

where \(H_{jj}\) is a \(j \times j\) Hessenberg matrix with the vectors \(h_j\) as columns. The second term on the right-hand side is nonzero only in the last column. The earlier normalization factors show up in the subdiagonal of \(H_{jj}\).

The eigensolution of the small Hessenberg matrix \(H_{jj}\) gives approximations to some of the eigenvalues and eigenvectors of the large matrix operator A. The eigenproblem

$$\begin{aligned} H_{jj} S_i ={\Theta }_i S_i , \quad i=1\cdots j \end{aligned}$$
(15)

can be solved inexpensively using the QR algorithm [34]. Then, \(y_i =V_j S_i\) is an approximate eigenvector of A, and its residual is

$$\begin{aligned} r_i= & {} Ay_i -{\Theta }_i y_i =AV_j S_i -V_j S_i {\Theta }_i \nonumber \\= & {} \left( {AV_j -V_j H_{jj} } \right) S_i =v_{j+1} h_{j+1,j} S_{ij}. \end{aligned}$$
(16)

This residual has to be small in norm for \({\Theta }_i\) to be a good eigenvalue approximation. The norm of this residual is \(r_i =\left| {h_{j+1,j} S_{ij} } \right| \). This norm is an error indicator and is used in termination conditions.

Indeed, the sequence of the k largest eigenvalues of \(H_{jj}\) is monotonically increasing and bounded above by the k-th largest eigenvalue of A. The resulting algorithm is shown in the following:

  1. (1)

    Choose initial vector \(v_1\) with \(\Vert v_1 \Vert =1\);

  2. (2)

    For \(j=0,1,2\cdots \) do:

    1. (a)

      \(w:=Av_j\);

    2. (b)

      For \(i=1,2,\cdots ,j\) do:

      $$\begin{aligned} \quad \quad h_{ij}:= & {} w_1 v_i , \\ \quad \quad w:= & {} w-h_{ij} v_{ii} \end{aligned}$$
    3. (c)

      \(h_{j+1,j} = \Vert w \Vert \);

    4. (d)

      \(v_{j+1} =w/h_{j+1,j}\);

    5. (e)

      Solve projected eigenproblem \(H_{jj} S={\Theta } S_i\)

    6. (f)

      If \(Max \left| {h_{j+1,j} S_{ij} } \right| <tol\), stop;

      $$\begin{aligned} \quad i=1,2,\cdots j \end{aligned}$$
  3. (3)

    End for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avazzadeh, Z., Khordad, R., Bahramiyan, H. et al. Energy gap renormalization and diamagnetic susceptibility in quantum wires with different cross-sectional shape. J Comput Electron 15, 931–938 (2016). https://doi.org/10.1007/s10825-016-0824-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0824-3

Keywords

Navigation