Skip to main content

Advertisement

Log in

A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Numerous scientific and fundamental hindrances have resulted in a slow down of silicon technology and opened new possibilities for emerging research devices and structures. The need has arisen to expedite new methods to interface these nanostructures for computing applications. Quantum-dot Cellular Automata (QCA) is one of such computing paradigm and means of encoding binary information. QCA computing offers potential advantages of ultra-low power dissipation, improved speed and highly density structures. This paper presents a novel two-input Exclusive-OR (XOR) gate implementation in quantum-dot cellular automata nanotechnology with minimum area and power dissipation as compared to previous designs. The proposed novel QCA based XOR structure uses only 28 QCA cells with an area of \(0.02\,\upmu \hbox {m}^{2}\) and latency of 0.75 clock cycles. Also the proposed novel XOR gate is implemented in single layer without using any coplanar and multi-layer cross-over wiring facilitating highly robust and dense QCA circuit implementations. To investigate the efficacy of our proposed design in complex array of QCA structures, 4, 8, 16 and 32-bit even parity generator circuits were implemented. The proposed 4-bit even parity design occupies 9 and 50 % less area and has 12.5 and 22.22 % less latency as compared to previous designs. The 32-bit even parity design occupies 22 % less area than the best reported previous design. The proposed novel XOR structure has 28 % less switching energy dissipation, 10 % less average leakage energy dissipation and 19 % less average energy dissipation than best reported design. The simulation results verified that the proposed design offers significant improvements in terms of area, latency, energy dissipation and structural implementation requirements. All designs have been functionally verified in the QCADesigner tool for GaAs/AlGaAs heterostructure based semiconductor implementations. The energy dissipation results have been computed using an accurate QCAPro tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Emerging Research Devices (ERD) , International Technology Roadmap for Semiconductors (ITRS), 2013 Edition, http://www.itrs.net/Links/2013ITRS/Home2013.htm

  2. Bourianoff, G.: The future of nanocomputing. IEEE Comput. Mag. 36(8), 44–53 (2003)

    Article  Google Scholar 

  3. Lent, C.S., Taugaw, P.D., Porod, W., Berstein, G.H.: Quantum cellular automata. Nanotechnology (IOPScience) 4(1), 49–57 (1993)

    Article  Google Scholar 

  4. Lent, C.S., Taugaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  5. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Sci. Mag. 227, 928–930 (1997)

    Google Scholar 

  6. Amlani, I., Orlov, A.O., Kummamuru, R.K., Bernstein, G.H., Lent, C.S., Snider, G.L.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett. 77(5), 738–740 (2000)

    Article  Google Scholar 

  7. Sheikhfaal, Shadi, Angizi, Shaahin, Sarmadi, Soheil, Moaiyeri, Mohammad Hossein, Sayedsalehi, Samira: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)

    Article  Google Scholar 

  8. Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire-crossing approach for exclusive-OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)

    Article  Google Scholar 

  9. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro—an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE international symposium circuits system, pp. 2377–2380, May (2011)

  10. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)

    Article  Google Scholar 

  11. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)

    Article  Google Scholar 

  12. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4736 (1996)

    Article  Google Scholar 

  13. Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)

    Article  Google Scholar 

  14. Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4(2), 147–156 (2013)

    Article  Google Scholar 

  15. Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-OR and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Not. Article ID 463967 (2014)

  16. Lent, C.S., Taugaw, P.D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proceedings of the workshop on physics and computing, pp. 5–13 (1994)

  17. Lent, C.S., Taugaw, P.D.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  Google Scholar 

  18. Lent, C.S., Taugaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)

    Article  Google Scholar 

  19. Porod, W., Lent, C.S., Bernstein, G.H., Orlov, A.O., Amlani, I., Snider, G.L., Merz, J.L.: Quantum-dot cellular automata: computing with coupled quantum dots. Int. J. Electron. 86(5), 549–590 (1999)

    Article  Google Scholar 

  20. Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full adder. Microelectron. J. 41, 820–826 (2010)

    Article  Google Scholar 

  21. Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)

    Article  Google Scholar 

  22. Bernstein, G.H., Imre, A., Metlushko, V., Orlov, A., Zhou, L., Ji, L., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)

    Article  Google Scholar 

  23. Gardelis, S., Smith, C.G., Cooper, J., Ritchie, D.A., Linfield, E., Jin, Y.: Evidence for transfer of polarization in a quantum-dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B 67(3), 1–3 (2003)

    Article  Google Scholar 

  24. Perez-Martinez, F., Farrer, I., Anderson, D., Jones, G., Ritchie, D.A., Chorley, S., Smith, C.G.: Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructures. Appl. Phys. Lett. 91(032102), 1–3 (2007)

    Google Scholar 

  25. Smith, C.G., Gardelis, S., Rushforth, A., Crook, R., Cooper, J., Ritchie, D.A., Linfield, E., Jin, Y., Pepper, M.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34(3–6), 195–203 (2003)

  26. Mitic, M., Cassidy, M.C., Petersson, K., Starrett, R., Gauja, E., Brenner, R., Clark, R., Dzurak, A., Yang, C., Jamieson, D.: Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89(013503), 1–3 (2006)

  27. Anderson, N.G., Bhanja, S. (eds.): Field-Coupled Nanocomputing. Lecture Notes in Computer Science (LNCS), vol. 8280. Springer, Berlin (2014)

    Google Scholar 

  28. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B19(5), 1752–1755 (2001)

    Article  Google Scholar 

  29. Blair, E. P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: Proceedings of 3rd IEEE conference on nanotechnology, pp. 402–405 (2003)

  30. Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: A system to demonstrate the bistability in molecules for application in a molecular QCA cell. In: IEEE Nanotechnology Materials and Devices Conference, pp. 46–49, 2–5 June (2009)

  31. Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Sci. Mag. 287, 1466–1468 (2000)

    Google Scholar 

  32. Imre, A., Csaba, G., Bernstein, G. H., Porod, W., Metlushko, V.: Investigation of antiferromagnetic ordering along chains of coupled nanomagnets. In: Proceedings of 3rd IEEE conference on nanotechnology, vol. 2, pp. 20–23 (2003)

  33. Lambson, B., Carlton, D., Bokor, J.: Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107(010604), 1–4 (2011)

    Google Scholar 

  34. Niemier, M.T.: Designing digital systems in quantum cellular automata. Master’s thesis, University of Notre Dame, Notre Dame, Indiana, USA (2004)

  35. Hashemi, S., Farazkish, R., Navi, K.: New quantum-dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)

    Article  Google Scholar 

  36. QCADesigner Tool Version 2.0.3, Available at hyperlink: http://www.mina.ubc.ca/qcadesigner_downloads

  37. Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmohan Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Sarin, R.K. & Raj, B. A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J Comput Electron 15, 455–465 (2016). https://doi.org/10.1007/s10825-016-0804-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0804-7

Keywords

Navigation