Skip to main content
Log in

Hydrogen sensitive field-effect transistor based on germanene nanoribbon and optical properties of hydrogenated germanene

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Physisorption of hydrogen molecules on armchair germanene nanoribbon (GeNR) is studied with density functional methods. The adsorption geometries, adsorption energies and transferred charge are obtained. To take the Van der Waals forces into account, the Grimme correction is added to the calculation method. The physisorption effect on the electrical properties of the ribbon is explored as a function of \(\hbox {H}_{2}\) concentration through the Green’s function techniques. Sensing features of the GeNR are investigated as a channel of a back gated field effect transistor. The optical properties of the nanoribbon are obtained for parallel and perpendicular polarizations. The results point out that, the germanene is a suitable substrate for \(\hbox {H}_{2}\) encapsulation. Moreover, \(\hbox {H}_{2}\) physisorption can improve the I–V characteristics and suppress the optical spectrum of the GeNR. The current through the nanoribbon increases by increasing \(\hbox {H}_{2}\) concentration at the same bias voltage. Also, the germanene back gated FET improve the sensing properties. The results show that the GeNR dielectric function is anisotropic and the GeNR becomes more transparent by increasing \(\hbox {H}_{2}\) density. Finally, by applying the spin-orbit coupling (SOC) effect, the obtained results are re-calculated and the changes in the results are studied. The SOC opens up the electronic band gap of the GeNR about 20 meV and increases the current slightly through the GeNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, Y., Yeow, J.T.W.: A review of carbon nanotubes-based gas sensors. J. Sens. 2009, Article ID 493904 (2009)

  2. Guzmn-Verri, G.G., Voon, L.C.L.Y.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)

    Article  Google Scholar 

  3. Lebègue, S., Eriksson, O.: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009)

    Article  Google Scholar 

  4. Brumfiel, G.: Sticky problem snares wonder material. Nature 495, 153 (2013)

    Google Scholar 

  5. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 15550 (2012)

    Google Scholar 

  6. Fleurence, A., Friedlein, R., Osaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)

    Article  Google Scholar 

  7. Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    Article  Google Scholar 

  8. Takeda, K., Shiraishi, K.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916 (1994)

    Article  Google Scholar 

  9. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)

    Article  Google Scholar 

  10. Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)

    Article  Google Scholar 

  11. Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M., Van Houselt, A., Rudenko, A.N., Lingenfelder, M., Brocks, G., Poelsema, B., Katsnelson, M.I., Zandvliet, H.J.W.: Germanene: the germanium analogue of graphene. J. Phys.: Condens. Matter 27, 443002 (2015)

    Google Scholar 

  12. Nijamudheen, A., Bhattacharjee, R., Choudhury, S., Datta, A.: Electronic and chemical properties of germanene: the crucial role of buckling. J. Phys. Chem. C 119(7), 3802–3809 (2015)

    Article  Google Scholar 

  13. Liu, C.-C., Feng, W., Yao, Y.: Quantum Spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Article  Google Scholar 

  14. Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)

    Article  Google Scholar 

  15. Matthes, L., Pulci, O., Bechstedt, F.: Massive Dirac quasi-particles in the optical absorbance of graphene, silicene, germanene, and tinene. J. Phys.: Condens. Matter 25, 395305 (2013)

    Google Scholar 

  16. Kaloni, T.P., Modarresi, M., Tahir, M., Rezaee Roknabadi, M., Schreckenbach, G., Freund, M.S.: Electrically engineered band gap in two-dimensional Ge, Sn, and Pb: a first-principles and tight-binding approach. J. Phys. Chem. C 119(21), 11896–11902 (2015)

    Article  Google Scholar 

  17. Liu, H., Gao, J., Zhao, J.: Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353–10359 (2013)

    Article  Google Scholar 

  18. Dell’Angela, M., et al.: Relating energy level alignment and amine-linked single molecule junction conductance. Nano Lett. 10, 2470–2474 (2010)

    Article  Google Scholar 

  19. Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)

    Article  Google Scholar 

  20. Mowbray, D.J., Jones, G., Thygesen, K.S.: Influence of functional groups on charge transport in molecular junctions. J. Chem. Phys. 128, 111103 (2008)

    Article  Google Scholar 

  21. Zhao, J., et al.: Gas molecule adsorption in carbon nanotubes. Nanotechnology 13, 195 (2002)

    Article  Google Scholar 

  22. Matthes, L., Pulci, O., Bechstedt, F.: Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. N. J. Phys. 16, 105007 (2014)

    Article  Google Scholar 

  23. Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many electron system. Phys. Rev. B 54, 16533–16539 (1996)

    Article  Google Scholar 

  24. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  Google Scholar 

  25. Troullier, N., Martins, J.L.: Efficient pseudopotentials for planewave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  Google Scholar 

  26. Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502–19 (2009)

    Google Scholar 

  27. Grimme, S.: Semi-empirical GGA-type density functional constructed with a long-range dispersion correlation. J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  28. Barone, V., et al.: Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J. Comput. Chem. 30, 934 (2009)

    Article  Google Scholar 

  29. Soler, J.M., Artacho, E., Gale, J.D., Garcıa, A., Junquera, J., Ordejon, P., Portal, D.S.: The SIESTA method for ab initio order N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)

    Article  Google Scholar 

  30. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  31. Löwdin, P.-O.: Quantum theory of many-particle systems. I. Physical Interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  33. Heyd, J.G., Scuseria, E., Ernzerhof, M.J.: Hybrid functionals based on a screened Coulomb potential. Chem. Phys. 118, 8207–8215 (2003)

    Google Scholar 

  34. Heyd, J.G., Scuseria, E., Ernzerhof, M.J.: Erratum. Hybrid functionals based on a screened Coulomb potential. Chem. Phys. 124, 219906 (2006)

    Google Scholar 

  35. Tsai, W., Huang, C., Chang, T., Lin, H., Jeng, H., Bansil, A.: Gated silicene as a tunable source of nearly 100% spin-polarized. Electrons. Nat. Commun. 4, 1500 (2013)

    Article  Google Scholar 

  36. Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Bayani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayani, A.H., Dideban, D. & Moezi, N. Hydrogen sensitive field-effect transistor based on germanene nanoribbon and optical properties of hydrogenated germanene. J Comput Electron 15, 381–388 (2016). https://doi.org/10.1007/s10825-016-0797-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0797-2

Keywords

Navigation