Skip to main content

Advertisement

Log in

Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) materials have undergone revolutionary progress over the last 20 years. The thermoelectric figure of merit ZT, which quantifies the ability of a material to convert heat into electricity has more than doubled compared to traditional values of \(ZT\sim 1\), reaching values even beyond \(ZT\sim 2\) in some instances. These improvements are mostly attributed to drastic reductions of the thermal conductivity in nanostructured materials and nanocomposites. However, as thermal conductivities in these structures approach the amorphous limit, any further benefits to ZT must be achieved through the improvement of the thermoelectric power factor. In this work we review two of the most promising avenues to increase the power factor, namely (i) modulation doping and (ii) electron energy filtering, and present a computational framework for analysis of these mechanisms for two example cases: low-dimensional gated Si nanowires (electrostatically achieved doping), and superlattices (energy filtering over potential barriers). In the first case, we show that a material with high charge density, but free of ionized impurities, can provide up to a five-fold thermoelectric power factors increase compared to the power factor of the doped material, which highlights the benefits of modulation doping, or gating of materials. In the second case, we show that optimized construction of energy barriers within a superlattice material geometry can improve the power factor by up to \(\sim 30\,\%\). This paper is intended to be a review of our main findings with regards to efforts to improve the thermoelectric power factor through modulation doping and energy filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009)

    Article  Google Scholar 

  2. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: Science 320, 634 (2008)

    Article  Google Scholar 

  3. Wu, H.J., Zhao, L.-D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q.: Broad temperature plateau for thermoelectric figure of merit \(\text{ ZT }>2\) in phase-separated \(\text{ PbTe }_{0.7}\text{ S }_{0.3}\). Nat. Commun 5, 5515 (2014)

    Article  Google Scholar 

  4. Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)

    Article  Google Scholar 

  5. Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)

    Article  Google Scholar 

  6. Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)

    Article  Google Scholar 

  7. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  Google Scholar 

  8. Boukai, A.I., Bunimovich, Y., Kheli, T., Yu, J.-K., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  Google Scholar 

  9. Li, D., Wu, Y., Fang, R., Yang, P., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)

    Article  Google Scholar 

  10. Chen, G.: Phonon transport in low-dimensional structures. Semicond. Semimet. 71, 203–259 (2001)

    Article  Google Scholar 

  11. Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008)

    Article  Google Scholar 

  12. Li, D., Huxtable, S.T., Abramsin, A.R., Majumdar, A.: Thermal transport in nanostructured solid-state cooling devices. Trans. ASME 127, 108–114 (2005)

    Article  Google Scholar 

  13. Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009)

    Article  Google Scholar 

  14. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  Google Scholar 

  15. Garg, J., Chen, G.: Minimum thermal conductivity in superlattices: a first-principles formalism. Phys. Rev. B 87, 140302 (2013)

    Article  Google Scholar 

  16. Nielsch, K., Bachmann, J., Kimling, J., Böttner, H.: Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv. Energy Mater. 1, 713–731 (2011)

    Article  Google Scholar 

  17. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.C.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)

    Article  Google Scholar 

  18. Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993)

    Article  Google Scholar 

  19. Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436–7439 (1996)

    Article  Google Scholar 

  20. Zeng, G., Bowers, J.E., Zide, J.M.O., Gossard, A.C., Kim, W., Singer, S., Majumdar, A., Singh, R., Bian, Z., Zhang, Y., Shakouri, A.: ErAs:InGaAs/InGaAlAsErAs:InGaAs/InGaAlAs superlattice thin-film power generator array. Appl. Phys. Lett. 88, 113502 (2006)

    Article  Google Scholar 

  21. Neophytou, N., Kosina, H.: Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys. Rev. B 83, 245305 (2011)

    Article  Google Scholar 

  22. Neophytou, N., Kosina, H.: On the interplay between electrical conductivity and seebeck coefficient in ultra-narrow silicon nanowires. J. Electron. Mater. 41(6), 1305–1311 (2012)

    Article  Google Scholar 

  23. Kim, R., Lundstrom, M.: Computational study of the Seebeck coefficient of one-dimensional composite nano-structures. J. Appl. Phys. 110, 034511 (2011)

    Article  Google Scholar 

  24. Kim, R., Lundstrom, M.S.: Computational study of energy filtering effects in one-dimensional composite nano-structures. J. Appl. Phys. 111, 024508 (2012)

    Article  Google Scholar 

  25. Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., Chen, G.: Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 11, 2225–2230 (2011)

    Article  Google Scholar 

  26. Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., Ren, Z.: Nano Lett. 12(4), 2077–2082 (2012)

    Article  Google Scholar 

  27. Curtin, B.M., Codecido, E.A., Krämer, S., Bowers, J.E.: Field-effect modulation of thermoelectric properties in multigated silicon nanowires. Nano Lett. 13, 5503–5508 (2013)

    Article  Google Scholar 

  28. Neophytou, N., Kosina, H.: Gated Si nanowires for large thermoelectric power factors. Appl. Phys. Lett. 105, 073119 (2014)

    Article  Google Scholar 

  29. Samarelli, A., Llin, FerreL, Cecchi, S., Frigerio, J., Etzelstorfer, T., Müller, E., Zhang, Y., Watling, J.R., Chrastina, D., Isella, G., Stangl, J., Hague, J.P., Weaver, J.M.R., Dobson, P., Paul, D.J.: The thermoelectric properties of Ge/SiGe modulation doped superlattices. J. Appl. Phys. 113, 233704 (2013)

    Article  Google Scholar 

  30. Hou, Q.R., Gu, B.F., Chen, Y.B., He, Y.J., Sun, J.L.: Enhancement of the thermoelectric power factor of \(\text{ MnSi }_{1.7}\) film by modulation doping of Al and Cu. Appl. Phys. A 114, 943–949 (2014)

    Article  Google Scholar 

  31. Pei, Y.-L., Wu, H., Wu, D., Zheng, F., He, J.: High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J. Am. Chem. Soc. 136, 13902 (2014)

    Article  Google Scholar 

  32. Jaworski, C.M., Kulbachinskii, V., Heremans, J.P.: Antimony as an amphoteric dopant in lead telluride. Phys. Rev. B 80, 125208 (2009)

    Article  Google Scholar 

  33. Popescu, A., Woods, L.M., Martin, J., Nolas, G.S.: Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79, 205302 (2009)

    Article  Google Scholar 

  34. Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology 24, 205402 (2013)

    Article  Google Scholar 

  35. Thesberg, M., Pourfath, M., Kosina, H., Neophytou, N.: The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices. J. Appl. Phys 118, 224301 (2015)

    Article  Google Scholar 

  36. Thesberg, M., Pourfath, M., Neophytou, N., Kosina, H.: The fragility of thermoelectric power factor in cross-plane superlattices in the presence of nonidealities: a quantum transport simulation approach. J. Electron. Mater., online (2015)

  37. Vashaee, D., Shakouri, A.: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)

    Article  Google Scholar 

  38. Zhao, L.D., Lo, S.H., He, J.Q., Hao, L., Biswas, K., Androulakis, J., Wu, C.I., Hogan, T.P., Chung, D.Y., Dravid, V.P., Kanatzidis, M.G.: High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 133, 20476–20487 (2011)

    Article  Google Scholar 

  39. Bahk, J.-H., Bian, Z., Shakouri, A.: Electron transport modeling and energy filtering for efficient thermoelectric \(\text{ Mg }_{2}\text{ Si }_{1-x}\text{ Sn }_{x}\) solid solutions. Phys. Rev. B 89, 075204 (2014)

    Article  Google Scholar 

  40. Bahk, J.-H., Shakouri, A.: Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers. Appl. Phys. Lett. 105, 052106 (2014)

    Article  Google Scholar 

  41. Narducci, D., Selezneva, E., Cerofolini, G., Frabboni, S., Ottaviani, G.: Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors. J. Solid State Chem. 193, 19–25 (2012)

    Article  Google Scholar 

  42. Liu, W., Yan, X., Chen, G., Ren, Z.: Recent advances in thermoelectric nanocomposites. Nano Energy 1, 42–56 (2012)

    Article  Google Scholar 

  43. Zide, J.M.O., Vashaee, D., Bian, Z.X., Zeng, G., Bowers, J.E., Shakouri, A., Gossard, A.C.: Demonstration of electron filtering to increase the Seebeck coefficient in \(\text{ In }_{0.53}\text{ Ga }_{0.47}\text{ As }/\text{ In }_{0.53}\text{ Ga }_{0.28}\text{ Al }_{0.19}\) as superlattices. Phys. Rev. B 74, 205335 (2006)

    Article  Google Scholar 

  44. Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)

    Article  Google Scholar 

  45. Alam, H., Ramakrishna, S.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. Nano Energy 2, 190–212 (2013)

    Article  Google Scholar 

  46. Tian, Y., Sakr, M.R., Kinder, J.M., Liang, D., MacDonald, M.J., Qiu, R.L.J., Gao, H.-J., Gao, X.P.A.: One-dimensional quantum confinement effect modulated thermoelectric properties in inas nanowires. Nano Lett. 12, 6492–6497 (2012)

    Article  Google Scholar 

  47. Moon, J., Kim, J.-H., Chen, Z.C.Y., Xiang, J., Chen, R.: Gate-modulated thermoelectric power factor of hole gas in Ge–Si core-shell nanowires. Nano Lett. 13, 1196–1202 (2013)

    Article  Google Scholar 

  48. Liang, W., Hochbaum, A.I., Fardy, M., Rabin, O., Zhang, M., Yang, P.: Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 9, 1689–1693 (2009)

    Article  Google Scholar 

  49. Neophytou, N., Baumgartner, O., Stanojevic, Z., Kosina, H.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. Solid State Electron. 90, 44–50 (2013)

    Article  Google Scholar 

  50. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69, 115201 (2004)

    Article  Google Scholar 

  51. Neophytou, N., Paul, A., Lundstrom, M., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron. Dev. 55, 1286–1297 (2008)

    Article  Google Scholar 

  52. Lee, S., Oyafuso, F., Von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004)

    Article  Google Scholar 

  53. Neophytou, N., Kosina, H.: Large enhancement in hole velocity and mobility in p-type [110] and [111] silicon nanowires by cross section scaling: an atomistic analysis. Nano Lett. 10, 4913–4919 (2010)

    Article  Google Scholar 

  54. Jin, S., Fischetti, M.V., Tang, T.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)

    Article  Google Scholar 

  55. Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M., Matsusue, T.: Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934 (1987)

    Article  Google Scholar 

  56. Uchida, K., Takagi, S.: Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 82, 2916 (2003)

    Article  Google Scholar 

  57. Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)

    Article  Google Scholar 

  58. Neophytou, N., Kosina, H.: Atomistic simulations of low-field mobility in Si nanowires: influence of confinement and orientation. Phys. Rev. B 84, 085313 (2011)

    Article  Google Scholar 

  59. Rameshan, K., Wong, N.A., Chan, K., Sim, S.P., Yang, C.Y.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. Solid-State Electron. 46, 153–156 (2002)

  60. Neophytou, N., Kosina, H.: Optimizing thermoelectric power factor by means of a potential barrier. J. Appl. Phys. 114, 044315 (2013)

    Article  Google Scholar 

  61. Nishio, Y., Hirano, T.: Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. Jpn. J. Appl. Phys. 36, 170–174 (1997)

    Article  Google Scholar 

  62. Kim, R., Jeong, C., Lundstrom, M.S.: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)

    Article  Google Scholar 

  63. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  64. Koswatta, S.O., Hasan, S., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron. Dev. 54, 2339–2351 (2007)

  65. Price, A., Martinez, A., Valin, R., Barker, J.R.: Impact of different electron-phonon scattering models on the electron transport in a quantum wire. J. Phys.: Conf. Ser. 526, 012007 (2014)

    Google Scholar 

  66. Rhyner, R., Luisier, M.: Phonon-limited low-field mobility in silicon: quantum transport vs. linearized Boltzmann transport equation. J. Appl. Phys. 114, 223708 (2013)

    Article  Google Scholar 

  67. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’ Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    Article  Google Scholar 

  68. Shi, L., Jiang, J., Zhang, G., Li, B.: High thermoelectric figure of merit in silicon–germanium superlattice structured nanowires. Appl. Phys. Lett. 101, 233114 (2012)

    Article  Google Scholar 

  69. Hu, M., Poulikakos, D.: Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012)

    Article  Google Scholar 

  70. Saleemi, M., Famengo, A., Fiameni, S., Boldrini, S., Battiston, S., Johnsson, M., Muhammed, M., Toprak, M.S.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. J. Alloys Compd. 619, 31–37 (2015)

    Article  Google Scholar 

  71. Perumal, S., Gorsse, S., Ail, U., Prakasam, M., Vivès, S., Decourt, R., Umarji, A.M.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. Mater. Lett. 155, 41–43 (2015)

    Article  Google Scholar 

  72. Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: J. Electron. Mater. 43(6), 1896–1904 (2014)

    Article  Google Scholar 

  73. Narducci, D., Lorenzi, B., Zianni, X., Neophytou, N., Frabboni, S., Gazzadi, G.C., Roncaglia, A., Suriano, F.: Enhancement of the power factor in two-phase silicon-boron nanocrystalline alloys. Phys. Status Solidi a 211(6), 1255–1258 (2014)

    Article  Google Scholar 

  74. Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975)

    Article  Google Scholar 

  75. Orton, J.W., Powell, M.J.: The Hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 43, 1263 (1980)

    Article  Google Scholar 

Download references

Acknowledgments

Mischa Thesberg was supported by the Austrian Science Fund (FWF) contract P25368-N30. Some of the computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neophytos Neophytou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neophytou, N., Thesberg, M. Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor. J Comput Electron 15, 16–26 (2016). https://doi.org/10.1007/s10825-016-0792-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0792-7

Keywords

Navigation