Skip to main content
Log in

A modified macro model approach for SPICE based simulation of single electron transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new macro model of single electron transistor (SET) for SPICE based simulation of SET circuits is proposed. Two voltage controlled current sources and some scaling factors are incorporated in the existing model to derive our model. The V–I characteristics of the proposed SET is promising enough to be used as the basic element for designing circuits based on SETs. A comparison with the previous models establishes the fact that our model efficiently removes the drawbacks of the existing models. Our model also agrees well with the results obtained from popular SIMON simulator. To verify the accuracy, we have designed a SET inverter cell and investigated its characteristics. The work includes the effect of the parameters on the noise margin and voltage transfer characteristics of the inverter circuit. Further, to verify the applicability, a multi peak negative differential resistance circuit based on the proposed model is designed and simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Grabert, H., Devoret, M.H. (eds.): Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures. Plenum press, New York and London (1992)

    Google Scholar 

  2. Gordon, D.G., Montemerlo, M.S., Love, J.C., Opiteck, G.J., Ellenborgen, J.C.: Overview of nanoelectronic devices. Proc. IEEE 85, 521 (1997)

    Article  Google Scholar 

  3. Ionescu, A.M., Declercq, M.J., Mahapatra, S., Banerjee, K., Gautier, J.: Few Electron devices: towards hybrid CMOS-SET integrated circuits. In: Proceedings \(39^{{\rm th}}\)Design Automation Conference. New Orleans (2002)

  4. Jain, A., Singh, N.B., Sarkar, S.K.: A new compact analytical model of single electron transistor for hybrid SET-MOS circuits. Solid State Electron. 104, 90 (2015)

    Article  Google Scholar 

  5. Jana, B., Jana, A., Sing, J.K., Sarkar, S.K.: Performance of multigate single electron transistor in wide temperature range and 22 nm hybrid technology. J. Nanoelectron. Optoelectron. 9, 357 (2014)

    Article  Google Scholar 

  6. Chen, R.H., Korotkov, A.N., Likharev, K.K.: Single-electron transistor logic. Appl. Phys. Lett. 68, 1954 (1996)

    Article  Google Scholar 

  7. Boubaker, A., Sghaier, Na, Trodi, M., Kalbossi, A., Boboux, N., Souifi, A.: A new SIMPLORER model for single-electron transistors. Microelectron. J. 38, 894 (2007)

    Article  Google Scholar 

  8. Mahapatra, S., Banerjee, K., Pegeon, F., Ionescu, A.M.: A CAD framework for co-design and analysis of CMOS-SET hybrid integrated circuits. In: Proceedings of ICCAD. SanJose (2003)

  9. Mahapatra, S., Vaish, V., Wasshuber, C., Banerjee, K., Ionescu, A.M.: Analytical modeling of single electron transistor for hybrid CMOS-SET analog IC design. IEEE Trans. Electron. Devices 51, 1772 (2004)

    Article  Google Scholar 

  10. Durrani, Z.A.K.: Single Electron Devices and Circuits in Silicon. Imperial College Press, London (2010)

    Google Scholar 

  11. Wasshuber, C.: Computational Single-Electronics. Springer, New York (2001)

    Book  MATH  Google Scholar 

  12. Chaohong, H., Cotofana, S.D., Jianfei, J., Qiyu, C.: Analog-to-digital converter based on single-electron tunneling transistors. IEEE Trans. VLSI Syst. 12, 1209 (2004)

    Article  Google Scholar 

  13. Gerousis, C., Grepiotis, A.: Reconfigurable gate array architecture for logic functions in tunneling transistor technology. Microelectron. J. 44, 706 (2011)

    Article  Google Scholar 

  14. Chen, Y.C., Wang, C.Y., Huang, C.Y.: Verification of reconfigurable binary decision diagram-based single-electron transistor arrays. IEEE Trans. Comput. Aided Des. Integr. Circuit. Syst. 32, 1473 (2013)

    Article  Google Scholar 

  15. Sahafi, A., Moaiyeri, M.H., Navi, K., Hashemipour, O.: Efficient single-electron transistor inverter-based logic circuits and memory elements. J. Comput. Theor. Nanosci. 10, 1171 (2013)

  16. agarwal, P.B., Kumar, A.: Design and simulation of octal-to-bi nary encoder using capacitive single-electron transistors (C-SETs). Microelectron. J. 42, 96 (2011)

    Article  Google Scholar 

  17. Wasshuber, C.: Single-electronics-how it works: how it’s used—how it’s simulated. In: Proceedings of the International Symposium on Quality Electronic Design. San Jose (2002)

  18. Samanta, D., Ghosh, A., Sarkar, S., Sarkar, S.K.: Design and simulation of a sequence generator using single electron devices and hybrid architecture. J. Nanoelectron. Optoelectron. 5, 1 (2010)

    Article  Google Scholar 

  19. Abutaleb, M.M.: A new static differential design style for hybrid SET-CMOS logic circuits. J. Comput. Electron. 14, 329 (2015)

    Article  Google Scholar 

  20. Jana, A., Basanta Singh, N., Sing, J.K., Sarkar, S.K.: Design and simulation of hybrid CMOS-SET circuits. Microelectron. Reliab. 53, 592 (2012)

    Article  Google Scholar 

  21. Sui, B., Fang, L., Chi, Y., Zhang, C.: Nano-reconfigurable cells with hybrid circuits of single-electron transistors and MOSFETs. IEEE Trans. Electron. Devices 57, 2251 (2010)

    Article  Google Scholar 

  22. Koppimen, P.J., Stewart, M.D., Zimmerman, M.J.: Fabrication and electrical characterization of fully CMOS-compatible Si single-electron devices. IEEE Trans. Electron. Device. 60, 78 (2013)

    Article  Google Scholar 

  23. Jain, A., Singh, N.B., Ghosh, A., Sarkar, S.K.: Stability and reliability analysis of hybrid CMOS-SET circuits: a new approach. J. Comput. Theor. Nanosci. 11, 2519 (2014)

    Article  Google Scholar 

  24. Wei, W., Han, J., Lombardi, F.: Design and evaluation of a hybrid memory cell by single-electron transfer. IEEE Trans. Nanotechnol. 12, 57 (2013)

    Article  Google Scholar 

  25. Yu, Y.S., Hwang, S.W., Ahn, D.: Transient modelling of single-electron transistors for efficient circuit simulation by SPICE. IEE Proc. Circuit Device. Syst. 152, 691 (2005)

    Article  Google Scholar 

  26. Boubaker, A., Troudib, M., Sghaierb, N., Souifia, A., Babouxa, N., Kalboussib, A.: A spice model for single electron transistor applications at low temperatures: inverter and ring oscillator. Proceedings of International Conference on Design & Technology of Integrated Systems in Nanoscale Era. Tozeur (2008)

  27. Wei, W., Han, J., Lombardi, F.: Robust HSPICE modeling of a single electron turnstile. Microelectron. J. 45, 394 (2014)

    Article  Google Scholar 

  28. Yu, Y.S., Hwang, S.W., Ahn, D.: Macromodeling of single-electron transistors for efficient circuit simulation. IEEE Trans. Electron. Device. 46, 1667 (1999)

    Article  Google Scholar 

  29. Wu, Y.L., Lin, S.T.: An improved single electron transistor model for SPICE application. Nanotechnology 3, 321 (2003)

    Google Scholar 

  30. Karimian, M.R., Dousti, M.: A new SPICE macro-model for the simulation of single electron circuits. J. Korean Phys. Soc. 56, 1202 (2001)

    Google Scholar 

  31. Jain, A., Ghosh, A., Singh, N.B., Sarkar, S.K.: A new SPICE macro model of single electron transistor for efficient simulation of single-electronics circuits. Analog Integr. Circuit Signal Process. 82, 653 (2015)

    Article  Google Scholar 

  32. Rabey, J., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits a Design Perspective. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  33. Gan, K.J.: Novel four-peak or five-peak current-voltage characteristics for three negative differential resistance devices in series. Solid-State Electron. 44(9), 1597–1602 (2000)

    Article  Google Scholar 

  34. Gan, K.J.: The low-high-low I V characteristics of five to seven peaks based on four NDR devices. IEEE Trans. Electron. Device. 48(8), 1683–1687 (2001)

    Article  Google Scholar 

  35. Shin, S., Kim, K.R.: Novel design of multiple negative-differential resistance (NDR) device in a 32 nm CMOS technology using TCAD. Proceeding of International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 316–319 (2013)

Download references

Acknowledgments

Subir Kumar Sarkar thankfully acknowledges the financial support obtained from UGC UPE-Phase II project, Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Jain, A., Singh, N.B. et al. A modified macro model approach for SPICE based simulation of single electron transistor. J Comput Electron 15, 400–406 (2016). https://doi.org/10.1007/s10825-015-0790-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0790-1

Keywords

Navigation