Skip to main content
Log in

Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The analytical model for the threshold voltage instability in top-gated staggered nanocrystalline silicon thin-film transistor is reported. This novel model includes the effect of various physical parameters like grain size, gate insulator thickness, doping density and grain boundary trapping state on the threshold voltage shift which is never reported earlier. It is observed that the higher trap density, greater doping concentration and larger gate insulator thickness provide lesser threshold voltage shift. Further, it is found from the results of grain size analysis that if grain size is smaller than threshold voltage shift decreases with decrease in grain size. However, if grain size is larger \((\hbox {D}_\mathrm{g} > 20\,\hbox {nm})\) then device become stable and shows negligible threshold voltage shift. In this paper, threshold voltage shift under gate bias voltage is also analyzed and result reveals that threshold voltage increases with the bias voltage. The calculated results are compared with experimental data. The close match between the two confirms the validity of proposed study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Easton, B.C., Chapman, J.A., Hill, O.F., Powell, M.J.: The plasma-enhanced deposition of hydrogenated amorphous silicon. Vacuum 34, 371–376 (1984)

    Article  Google Scholar 

  2. Kuo, Y.: Thin Film Transistors: Materials and Process, vol. 2, 1st edn. Kluwer Academic, New York (2004)

    Book  Google Scholar 

  3. Shin, K.W.: Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors [PhD Thesis], University of Waterloo, Canada (2008)

  4. Ferris-Prabhu, V.A.: Charge transfer by direct tunneling in thin-oxide memory transistors. IEEE Trans. Electron Devices 24, 524–530 (1977)

    Article  Google Scholar 

  5. Fujita, S., Nishihara, M., Hoi, W.L., Sasaki, A.: Deep trap states in \({\rm Si}_{3}{\rm N}_{4}\) layer on Si substrate. Jpn. J. Appl. Phys. 20, 917–923 (1981)

  6. Chang, J.J.: Theory of MNOS memory transistor. IEEE Trans. Electron Devices 24, 511–518 (1977)

    Article  Google Scholar 

  7. Lundstrom, K.I., Svensson, C.M.: Properties of MNOS structures. IEEE Trans. Electron Devices 19, 826–836 (1971)

    Article  Google Scholar 

  8. Svensson, C.M., Lundstrom, K.I.: Trap-assisted charge injection in MNOS structures. J. Appl. Phys. 44, 4657–4663 (1973)

    Article  Google Scholar 

  9. Wright, S.W., Anderson, J.C.: Trapping centres in sputtered SiO\(_2\) films. Thin Solid Films 62, 89–96 (1979)

    Article  Google Scholar 

  10. Koelmans, H., De Graaff, H.C.: Drift phenomena in CdSe thin film FET’s. Solid State Electron. 10, 997–1000 (1967)

    Article  Google Scholar 

  11. Powell, M.J.: Charge trapping instabilities in amorphous silicon silicon nitride thin film transistors. Appl. Phys. Lett. 43, 597–599 (1983)

    Article  Google Scholar 

  12. Esmaeili-Rad, M.R., Sazonov, A., Nathan, A.: Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements. Appl. Phys. Lett. 91, 113511-1-3 (2007)

    Article  Google Scholar 

  13. Libsch, F.R., Kanicki, J.: Bias stress induced stretched exponential time dependence of charge injection and trapping in amorphous thin film transistors. Appl. Phys. Lett. 62, 1286–1288 (1993)

    Article  Google Scholar 

  14. Bauza, M., Ahnood, A., Li, F.M., Vygranenko, Y., Esmaeili-Rad, M.R., Chaji, G., Sazonov, A., Robertson, J., Milne, W.I., Nathan, A.: Photo-induced instability of nanocrystalline TFTs. J. Disp. Technol. 6, 589–591 (2010)

    Article  Google Scholar 

  15. Kim, S.J., Park, S.G., Ji, S.B., Han, M.K.: Effect of drain bias stress on stability of nanocrystalline silicon thin film transistors with various channel lengths. Jpn. J. Appl. Phys. Part 1 49, 04DH121–04DH124 (2010)

    Google Scholar 

  16. Streetman, B.G., Banerjee, S.K.: Solid State Electronics Devices, 6th edn, p. 273. Pearson Education, New Jersey (2006)

  17. Wang, L.W., Zunger, A.: Dielectric constants of silicon quantum dots. Phys. Rev. Lett. 73, 1039–1042 (1994)

    Article  Google Scholar 

  18. Mao, L.F.: Quantum size impacts on the threshold voltage in nanocrystalline silicon thin film transistors. Microelectron. Reliab. 53(12), 1886–1890 (2013)

    Article  Google Scholar 

  19. Lee, C.H., Nathan, A.: Stability of nc-Si: H TFTs with silicon nitride gate dielectric. IEEE Trans. Electron Devices 54, 45–50 (2007)

    Article  Google Scholar 

  20. Esmaeili-Rad, M.R., Li, F., Sazonov, A., Nathan, A.: Stability of nanocrystalline silicon bottom-gate thin film transistors with silicon nitride gate dielectric. J. Appl. Phys. 102(6), 4512 (2007)

    Article  Google Scholar 

  21. Lee, C.H., Striakhilev, D., Tao, S., Nathan, A.: Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon. IEEE Electron Device Lett. 26(9), 637–639 (2005)

    Article  Google Scholar 

  22. Lee, C.H., Sazonov, A., Nathan, A.: High-performance n-channel 13.56 MHz plasma-enhanced chemical vapor deposition nanocrystalline silicon thin-film transistors. J. Vac. Sci. Technol. A 24(3), 618–623 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Gupta, N. Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor. J Comput Electron 15, 666–671 (2016). https://doi.org/10.1007/s10825-015-0789-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0789-7

Keywords

Navigation