Skip to main content
Log in

Towards the design of hybrid QCA tiles targeting high fault tolerance

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The increasing fabrication cost of CMOS-based computing devices and the ever-approaching limits of their fabrication have led to the search for feasible options with high device density and low power waste. Quantum-dot cellular automata (QCA) is an emerging technology with such potential to match the design target beyond the limits of state-of-the-art CMOS. But nanotechnologies, like QCA are extremely susceptible to various forms of flaws and variations during fabrication at nano scale. Thus, the exploration of ingenious fault tolerant structure around QCA is gaining high importance. This work targets a new robust QCA tile structure hybridizing rotated and non-rotated cell together resulting lesser kink energy. Different QCA logic primitives (majority/minority logic, fanout tiles, etc.) are made using such hybrid cell structure. The functional characterization using the kink energy and the polarization level of such QCA structures under different cell defects have been thoroughly investigated. The results suggest that the proposed QCA logic primitives have achieved high fault tolerance of 97.43 %. Also, 100 % fault tolerance can be ascertained if the proposed logic circuit drives the correct output with the application of \(\langle \)001, 011\(\rangle \) as a primitive test vector only. A comparative performance of the proposed logic over existing structure makes it more reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (ITRS’13) (2013). http://www.itrs.net

  2. Gautier, J.: Beyond cmos: quantum devices. Microelectron. Eng. 39(14), 263–272 (1997)

    Article  Google Scholar 

  3. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  4. Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  5. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)

    Article  Google Scholar 

  6. Tougaw, P.D., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  7. Lent, C.S.: Personal communication on cell placement with different rotation and its fabrication issues. University of Notre Dame (2015)

  8. Pudi, V., Sridharan, K.: Low complexity design of ripple carry and brent kung adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)

    Article  Google Scholar 

  9. Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45(0), 42–54 (2015). http://www.sciencedirect.com/science/article/pii/S0045790615001470

  10. Cocorullo, G., Corsonello, P., Frustaci, F., Perri, S.: Design of efficient QCA multiplexers. Int. J. Circuit Theory Appl. (2015). doi:10.1002/cta.2096

  11. Patel, K.N., Markov, I.L., Hayes, J.P.: Evaluating circuit reliability under probabilistic gate-level fault models. In: In International Workshop on Logic Synthesis (IWLS, 2003), pp. 59–64 (2003)

  12. Bahar, R.I., Hammerstrom, D., Harlow, J., Joyner Jr, W.H., Lau, C., Marculescu, D., Orailoglu, A., Pedram, M.: Architectures for silicon nanoelectronics and beyond. Computer 40(1), 25–33 (2007). doi:10.1109/MC.2007.7

    Article  Google Scholar 

  13. Fijany, A., Toomarian, B.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3(1), 27–37 (2001). doi:10.1023/A:1011415529354

    Article  Google Scholar 

  14. Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998)

    Article  Google Scholar 

  15. Mahmoodi, Y., Tehrani, M.: Novel fault tolerant QCA circuits. In: 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 959–964 (2014)

  16. Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits. In: Proceedings of the 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, ser. DFT ’05, pp. 208–216 (2005)

  17. Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)

    Article  Google Scholar 

  18. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  19. Das, K., De, D.: A study on diverse nanostructure for implementing logic gate design for QCA. Int. J. Nanosci. 10(01n02), 263–269 (2011)

    Article  Google Scholar 

  20. Wei, T., Wu, K., Karri, R., Orailoglu, A.: Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. In: Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, vol. 2, pp. 1192–1195 (2005)

  21. Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008 (DFTVS ’08), pp. 236–244 (2008)

  22. Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014). http://www.sciencedirect.com/science/article/pii/S0026269214002663

  23. Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1(29), 81–87. Foundation of Computer Science (2010)

  24. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanopart. Res. 16(2), (2014). doi:10.1007/s11051-014-2259-8

  25. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015). http://www.sciencedirect.com/science/article/pii/S0026269215000907

  26. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015). doi:10.1007/s10825-015-0668-2

  27. Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test. 23(2–3), 163–174 (2007). doi:10.1007/s10836-006-0548-6

    Article  Google Scholar 

  28. Huang, J., Momenzadeh, M., Lombardi, F.: Proceedings of Defect tolerance of QCA tiles. In: Design, Automation and Test in Europe, 2006 (DATE ’06), vol. 1, pp.1–6 (2006)

  29. Vankamamidi, V., Lombardi, F.: Design of defect tolerant tile-based QCA circuits. In: Proceedings of the 18th ACM Great Lakes Symposium on VLSI, ser., 2008 (GLSVLSI ’08), pp. 237–242. doi:10.1145/1366110.1366169

  30. Srivastava, S., Sarkar, S., Bhanja, S.: Error-power tradeoffs in QCA design. In: 8th IEEE Conference on Nanotechnology, 2008 (NANO ’08), pp. 530–533 (2008)

  31. Farazkish, R., Sayedsalehi, S., Navi, K.: Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J. Nanotechnol. 2012(8), 1–8 (2010)

    Google Scholar 

  32. Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCAdesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  33. Dysart, T., Kogge, P.: Analyzing the inherent reliability of moderately sized magnetic and electrostatic QCA circuits via probabilistic transfer matrices. IEEE Trans. VLSI Syst. 17(4), 507–516 (2009)

    Article  Google Scholar 

  34. Angizi, S., Navi, K., Sayedsalehi, S., Navin, A.H.: Efficient quantum dot cellular automata memory architectures based on the new wiring approach. J. Comput.Theor. Nanosci. 11(11), 2318–2328 (2014)

  35. Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008 (DFTVS ’08), pp. 236–244 (2008)

  36. Dysart, T., Kogge, P.: Reliability impact of n-modular redundancy in QCA. IEEE Trans. Nanotechnol. 10(5), 1015–1022 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhash Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, B., Dutta, M., Mukherjee, R. et al. Towards the design of hybrid QCA tiles targeting high fault tolerance. J Comput Electron 15, 429–445 (2016). https://doi.org/10.1007/s10825-015-0760-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0760-7

Keywords

Navigation