Skip to main content
Log in

Investigating the optical AND gate using plasmonic nano-spheres

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a coherent perfect absorption (CPA)-type AND gate based on plasmonic nano particles is proposed. It consists of two gold nano sphere arrays on top of two serial arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particle waveguide. Since the CPA efficiency depends strongly on the number of gold nano-sphere and the locations of nano-spheres, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the ‘off’ state and the minimum absorption coefficient in the ‘on’ state. In Binary PSO, a group of birds consists a matrix with binary entries, control the presence (‘1’) or the absence (‘0’) of nano sphere in the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maier, S.A., Mark, L.B., Pieter, G.K., Scheffer, M., Ari, A.G.R., Harry, A.A.: Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001)

    Article  Google Scholar 

  2. Tuchscherer, P., Christian, R., Dmitri, V.V., Javier, G.D.A., Walter, P., Tobias, B.: Analytic coherent control of plasmon propagation in nanostructures. Opt. Express 17, 14235–14259 (2009)

    Article  Google Scholar 

  3. Giannini, V., Antonio, I., Fernández, D., Yannick, S., Tyler, R., Roberto, F., Stefan, A.M.: Controlling light localization and light-matter interactions with nanoplasmonics. Small 6, 2498–2507 (2010)

    Article  Google Scholar 

  4. Schuller, J.A., Edward, S.B., Wenshan, C., Young, C.J., Justin, S.W., Mark, L.B.: Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    Article  Google Scholar 

  5. Gramotnev, D.K., Sergey, I.B.: Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  Google Scholar 

  6. Dolatabady, A., Nosrat, G.: All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators. J. Opt. Soc. Korea 16, 432–442 (2012)

    Article  Google Scholar 

  7. Jafarian, B., Najmeh, N., Nosrat, G.: Analysis of a triangular-shaped plasmonic metal–insulator–metal Bragg grating waveguide. J. Opt. Soc. Korea 15, 118–123 (2011)

    Article  Google Scholar 

  8. Lu, H., Xueming, L., Yongkang, G., Leiran, W., Dong, M.: Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Opt. Commun. 284, 2613–2616 (2011)

    Article  Google Scholar 

  9. Setayesh, A., Sayyed, R.M., Mohammad, S.A.: Numerical investigation of tunable band-pass\(\backslash \) band-stop plasmonic filters with hollow-core circular ring resonator. J. Opt. Soc. Korea 15, 82–89 (2011)

    Article  Google Scholar 

  10. Wang, G., Lu, H., Liu, X., Mao, D., Duan, L.: Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonator at telecommunication regime. Opt. Express. 19, 3513–3518 (2011)

    Article  Google Scholar 

  11. Lu, Z., Zhao, W.: Nanoscale electro-optic modulators based on grapheme-slot waveguides. J. Opt. Soc. Am. B 29, 1490–1496 (2012)

    Article  Google Scholar 

  12. Kim, S.H., Young, T.B., Doo, G.K., Nadir, D., Young, C.C.: Widely tunable coupled-ring reflector laser diode consisting of square ring resonators. J. Opt. Soc. Korea 14, 38–41 (2010)

    Article  Google Scholar 

  13. Farahani, M., Nosrat, G., Mohammad, R.: Broadband zero reflection plasmonic junctions. JOSA B 29, 1722–1730 (2012)

    Article  Google Scholar 

  14. Jung, J.H., Kim, Min-Wook: Optimal design of fiber-optic surface plasmon resonance sensors. J. Opt. Soc. Korea 11(2), 55–58 (2007)

    Article  MathSciNet  Google Scholar 

  15. Byun, K.M.: Development of nanostructured plasmonic substrates for enhanced optical biosensing. J. Opt. Soc. Korea 14, 65–76 (2010)

    Article  Google Scholar 

  16. Lu, H., Xueming, L., Leiran, W., Yongkang, G., Dong, M.: Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910–2915 (2011)

    Article  Google Scholar 

  17. Wei, H., Zhuoxian, W., Xiaorui, T., Mikael, K., Hongxing, X.: Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011)

    Article  Google Scholar 

  18. Maksymov, I.S.: Optical switching and logic gates with hybrid plasmonic-photonic crystal nanobeam cavities. Phys. Lett. A 375, 918–921 (2011)

    Article  Google Scholar 

  19. Oh, G.Y., Doo, G.K., Young, W.C.: All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon stack. In: IEEE OptoElectronics and Communications Conference (OECC), 2010 15th, pp. 374–375 (2010)

  20. Xu, Q., Michal, L.: All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007)

    Article  Google Scholar 

  21. Liang, T.K., Nunes, L.R.M., Tsuchiya, K.S., Abedin, T.M., Dries, V.T., Walter, B., Pieter, D., Roel, B., Tsang, H.K.: High speed logic gate using two-photon absorption in silicon waveguides. Opt. Commun. 265, 171–174 (2006)

    Article  Google Scholar 

  22. Kim, J.H., Byoung, K.K., Yoon, H.P., Young, T.B., Seok, L., Deok, H.W., Sun, H.K.: All-optical AND gate using XPM wavelength converter. J. Opt. Soc. Korea 5, 25–28 (2001)

    Article  Google Scholar 

  23. Kaur, S., Kaler, Rajinder S.: Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier. J. Opt. Soc. Korea 16, 13–16 (2012)

    Article  Google Scholar 

  24. Yabu, T., Masahiro, G., Toshiaki, K., Kazuhiro, N., Shinnosuke, S.: All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38, 37–46 (2002)

    Article  Google Scholar 

  25. Pramono, Y.H., Endarko, : Nonlinear waveguides for optical logic and computation. J. Nonlinear Opt. Phys. Mater. 10, 209–222 (2001)

    Article  Google Scholar 

  26. Akhlaghi, M., Emami, F., Najmeh, N.: TLBO algorithm assisted for designing plasmonic nano particles based absorptio coefficient. Optoelectron. Adv. Mater.-Rapid Commun. 8, 845–848 (2014)

    Google Scholar 

  27. Akhlaghi, M., Emami, F., Najmeh, N.: Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. J. Modern Opt. 61, 1092–1096 (2014)

    Article  Google Scholar 

  28. Akhlaghi, M., Najmeh, N., Emami, F.: Investigating the optical switch using dimer plasmonic nano-rods. IEEE Trans. Nanotechnol. 13, 1172–1175 (2014)

    Article  Google Scholar 

  29. Taflove, A., Morris, E.B.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23, 623–630 (1975)

    Article  Google Scholar 

  30. Weiland, T.: A discretization model for the solution of Maxwell’s equations for six-component fields. Archiv Elektronik und Uebertragungstechnik 31, 116–120 (1977)

  31. Harrington, R.F., Jan, L.H.: Field Computation by Moment Methods. Oxford University Press, New York (1996)

    Google Scholar 

  32. Kern, A.M., Olivier, J.M.: Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. JOSA A 26, 732–740 (2009)

    Article  MathSciNet  Google Scholar 

  33. Gallinet, B., Andreas, M.K., Olivier, J.M.: Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. JOSA A 27, 2261–2271 (2010)

    Article  Google Scholar 

  34. Taboada, J.M., Javier, R., Fernando, O., Marta, G.A., Luis, L.: Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. JOSA A 28, 1341–1348 (2011)

    Article  Google Scholar 

  35. Taflove, A., Susan, C.H.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House, Norwood (1995)

    MATH  Google Scholar 

  36. Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  37. Draine, B.T., Piotr, J.F.: Discrete-dipole approximation for scattering calculations. JOSA A 11, 1491–1499 (1994)

    Article  Google Scholar 

  38. Forestiere, C., Giovanni, M., Svetlana, V.B., Luca, D.N.: The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt. Express 17, 9648–9661 (2009)

    Article  Google Scholar 

  39. Bohren, C.F., Donald, R.H.: Absorption and Scattering of Light by Small Particles. Wiley, Hoboken (2008)

    Google Scholar 

  40. Loke, V.L.Y., Mengüç, M.P., Timo, A.N.: Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB. J. Quant. Spectrosc. Radiat. Transf. 112, 1711–1725 (2011)

    Article  Google Scholar 

  41. Emami, F., Akhlaghi, M.: Gain ripple decrement of S-band raman amplifiers. IEEE Photonics Technol. Lett. 24, 1349–1352 (2012)

    Article  Google Scholar 

  42. Akhlaghi, M., Emami, F.: Fuzzy adaptive modified PSO-algorithm assisted to design of photonic crystal fiber Raman amplifier. J. Opt. Soc. Korea. 17, 237–241 (2013)

    Article  Google Scholar 

  43. Kennedy, J., Eberhart, R.C.: Discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE Conference on Systems, Man, and Cybernetics (IEEE, 1997), Vol. 5, pp. 4104–4108

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Akhlaghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaboli, M., Akhlaghi, M. Investigating the optical AND gate using plasmonic nano-spheres. J Comput Electron 15, 295–300 (2016). https://doi.org/10.1007/s10825-015-0747-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0747-4

Keywords

Navigation