Skip to main content
Log in

Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose analytical modeling of double gate (DG) tunnel field effect transistor (TFET) which is derived by using Evanescent-mode analysis approach. This approach considers the channel potential as the sum of a long channel potential and a short channel perturbation along with the whole structure rather than just the \(\hbox {Si}/\hbox {SiO}_{2}\) interface or the channel centre. Due to this, the characteristic length lambda \((\lambda )\) does not depend on the transverse position within the channel. Analytical potential modeling of DG-TFET along with evaluation of electric field and drain current has been carried out. It has also been shown in the results that the proposed model has better channel potential and tunnel current than single-gate SOI TFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frank, D., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.-S.P.: Device scaling limits of Si MOSFETs and their application dependence. Proc. IEEE 89(3), 259–288 (2001)

    Article  Google Scholar 

  2. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)

    Article  Google Scholar 

  3. Ionescu, A.M., Boucart, K., Moselund, K.E., Pott, V., Tsamados, D.: Small slope micro/nano-electronic switches. In: Proceedings of the International Semiconductor Conference, pp. 397–402 (2007)

  4. Goplakrishnan M., et al.: I-MOS: A novel semiconductor device with a subthreshold slop lower than kT/q. In: IEDM Technical Digest, pp. 289–292 (2002)

  5. Nathanson, H., et al.: Resonant gate transistor. IEEE Trans. Electron Devices 14(3), 117–133 (1967)

    Article  Google Scholar 

  6. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  7. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.K.: Tunneling field-effect transistors with subthreshold swing less than 60mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  8. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2009)

    Article  Google Scholar 

  9. Boucart, K., Ionescu, A.M.: Double-gate Tunnel FET with high-K gate dielectric. IEEETrans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  10. Toh, E.-H., Wang, G.H., Samudra, G., Yeo, Y.C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 104504–104504-5 (2008)

    Article  Google Scholar 

  11. International Technology Roadmap for Semiconductor, http://www.itrs.net/ (2013)

  12. Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with Tunnel bandgap modulation and gate workfunction engineering. IEEE Trans Electron Devices 52(5), 909–917 (2005)

    Article  Google Scholar 

  13. Wang, L., Yu, E., Taur, Y., Asbeck, P.: Design of tunneling field-effect transistors based on staggered heterojunctions for ultralow-power applications. IEEE Electron Device Lett. 31(5), 431–433 (2010)

    Article  Google Scholar 

  14. Nayfeh, O.M., Chleirigh, C.N., Hennessy, J., Gomez, L., Hoyt, J.L., Antoniadis, D.A.: Design of tunneling field-effect transisitors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29(9), 1074–1077 (2008)

  15. Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z.H., Avouris, P.: Comparing carbon nanotube transistors–the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)

    Article  Google Scholar 

  16. Vandenberghe, W., Verhulst, A., Groeseneken, G., Soree, B., Magnus, W.: Analytical model for a tunnel field-effect transistor. In: Proceedings of the MELECON, pp. 923–928 (2008)

  17. Bardon, M.G., Neves, H.P., Puers, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Device 57(4), 827–834 (2010)

    Article  Google Scholar 

  18. Shen, C., Ong, S.L., Heng, C-Huat, Samudra, G., Yeo, Yee-Chia: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Electron Device Lett. 29(11), 1252–1255 (2008)

    Article  Google Scholar 

  19. Zhang, L., Lin, X., He, J., Chan, M.: An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59(12), 3217–3223 (2012)

    Article  Google Scholar 

  20. Zhang, L., He, J., Chan, M.: A compact model for double-gate tunneling field-effect-transistors and its implications on circuit behaviors. In: IEEE International Electron Devices Meeting (IEDM), pp. 6.8.1–6.8.4 (2012)

  21. De Graaff, H.C., Klaassen, F.M.: Compact transistor modelling for circuit design. Computational microelectronics. Springer, New York (1990)

    Book  Google Scholar 

  22. Holtij, Thomas, Graef, Michael, Hain, Franziska Marie, Kloes, Alexander, Iñíguez, Benjamín: Compact model for short-channel junctionless accumulation mode double gate MOSFETs. IEEE Trans. Electron Devices 61(2), 288–299 (2013)

    Article  Google Scholar 

  23. Gildenblat, Gennady: Compact Modeling Principles, Techniques and Applications. Springer, New York (2010)

    Google Scholar 

  24. Oh, S.-H., Monroe, D., Hergenrother, J.M.: Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 21(9) (2000)

  25. Lee, Jiyeong, Shin, Hyungsoon: Evanescent-mode analysis of short-channel effects in MOSFETs. J. Korean Phys. Soc. 44(1), 50–55 (2004)

    Google Scholar 

  26. Lee, Min Jin, Choi, Woo Young: Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid-State Electron. 63, 110–114 (2011)

    Article  Google Scholar 

  27. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Silvaco ATLAS, Device Simulation Software, Silvaco Int., Santa Clara, CA (2012)

  29. Frank, D.J., Taur, Y., Wong, H.-S.P.: Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Lett. 19, 385–387 (1998)

    Article  Google Scholar 

  30. Nguyen, T.N.: Small-geometry MOS transistors: physics and modeling of surface- and buried-channel MOSFETs. Ph.D. Dissertation, Stanford University, Stanford (1984)

  31. Frenkil, J.: A multi-level approach to low-power IC design. IEEE Spectr. 35, 54–60 (1998)

    Article  Google Scholar 

  32. Kloes, A., Kostka, A.: A new analytical method of solving 2D poisson’s equation in MOS devices applied to threshold voltage and subthreshold modeling. Solid State Electron. 39(12), 1761–1775 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Raj, B. Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J Comput Electron 14, 820–827 (2015). https://doi.org/10.1007/s10825-015-0718-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0718-9

Keywords

Navigation