Skip to main content
Log in

A novel fin field effect transistor by extra insulator layer for high performance nanoscale applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The present study reveals the novel structure of nanoscale silicon-on-insulator fin field effect transistor (FinFET) in which an extra insulator layer (EIL) is injected into the silicon active layer. The key idea in this work is to control the hot electron effect by reducing the critical electric field near the drain region. The high-k dielectric \(\hbox {HfO}_{2}\) is located between the silicon active layer and drain region under the gate oxides, where the average lateral electric field in the post-saturation region is high due to the function of the gate. The results of simulations reveal improvement in the hot electron reliability of EIL–FinFET in comparison to conventional FinFET (C-FinFET). In the proposed structure, the insulator region \(\hbox {HfO}_{2}\) decreases the electric field in the channel and drain regions, especially near the Fin corners. Therefore, reducing the hot carrier effect (HCE), brings about more efficiency in the operation of the proposed structure in comparison with that of C-FinFET. Furthermore, the performance improvement of the proposed structure has been investigated using three-dimensional and two-carrier device simulator. In addition to that, the HCE, off current, and gate current in both the devices are compared to demonstrate the high reliability of the EIL–FinFET in complementary metal oxide semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Colinge, J.P.: Silicon-on-insulator technology: materials to VLSI, 3rd edn. Kluwer Academic Publishers, USA (2004)

  2. Kue, J.B., Lin, S.C.: Low-Voltage SOI CMOS VLSI Devices and Circuits. University of Waterloo NTUEE, Waterloo (2001)

    Google Scholar 

  3. Orouji, A.A., Kumar, M.J.: A new symmetrical double gate nanoscale MOSFET with asymmetrical side gates for electrically induced source/drain. Microelectron. Eng. 83, 409–414 (2006)

  4. Park, J.T., Colinge, J.P.: Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices 49(12), 2222–2229 (2002)

  5. Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004)

    Article  Google Scholar 

  6. Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.J., Bokor, J., Hu, C.: FinFET—a self aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)

    Article  Google Scholar 

  7. Karimi, F., Fathipour, M., Hosseini, R.: A quantum mechanical transport approach to simulation of quadruple gate silicon nano wire transistor. J. Nanosci. Nanotechnol. 11(12), 10476–10479 (2011)

    Article  Google Scholar 

  8. Karimi, F., Ghanatian, H., Fathipour, M.: The impact of structural parameters on the electrical characteristics of silicon nano wire transistor based on non equilibrium Green’s function. J. Nanosci. Nanotechnol. 12(2), 1131–1135 (2012)

    Article  Google Scholar 

  9. Orouji, A.A., Mehrad, M.: A new rounded edge fin field effect transistor for improving self-heating effects. Jpn. J. Appl. Phys. 50, 124303-1-6 (2011)

    Article  Google Scholar 

  10. Mehrad, M., Orouji, A.A.: Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans. Device Mater. Reliab. 10(2), 271–275 (2010)

    Article  Google Scholar 

  11. ATLAS User’s Manual: 2-D Device Simulator, SILVACO International, Santa Clara (2012)

  12. Kretz, J., Dreeskornfeld, L., Schroter, R., Landgraf, E., Hofmann, F., Rosner, W.: Realization and characterization of nano-scale FinFET devices. Microelectron. Eng. 73/74, 803–808 (2004)

    Article  Google Scholar 

  13. Ning, T.H., Cook, P.W., Dennard, R.H., Schuster, C.M., Yu, H.N.: 1 \(\mu \)m MOSFET VLSI technology. Part IV: Hot-electron design constraints. IEEE Trans. Electron Devices ED–26(4), 346–353 (1979)

    Article  Google Scholar 

  14. Ng, K.K., Taylor, G.W.: Effects of hot-carrier trapping in n- and p-channel MOSFETs. IEEE Trans. Electron Devices ED–30(8), 871–876 (1983)

    Article  Google Scholar 

  15. Riddet, C., Brown, A.R., Alexander, C.L., Watling, J.R., Roy, S., Asenov, A.: 3-D Monte Carlo simulation of the impact of quantum confinement scattering on the magnitude of current fluctuations in double gate MOSFETs. IEEE Trans. Nanotechnol. 6(1), 48–55 (2007)

    Article  Google Scholar 

  16. Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Sone, J.: Transistor characteristics of 14-nm-gate-length EJ-MOSFET’s. IEEE Trans. Electron Devices 47(4), 856–860 (2000)

    Article  Google Scholar 

  17. Yu, B., Wang, H., Joshi, A., Xiang, Q., Ibok, E., Lin, M.: 15 nm gate length planar CMOS transistor. In: International Electron Devices Meeting, 2001 (IEDM’01), pp. 937–939 (2001)

  18. Colinge, J.P., Colinge, C.A.: Physics of Semiconductor Devices. Kluwer Academic Publishers, New York (2005)

    Google Scholar 

  19. Su, K.W., Kuo, J.B.: A nonlocal impact ionization/lattice temperature model for VLSI double-gate ultrathin SOI NMOS devices. IEEE Trans. 44, 324–330 (1997)

    Article  Google Scholar 

  20. Kuo, J.B., Su, K.-W.: CMOS VLSI Engineering-Silicon-on-Insulator (SOI). National Taiwan University, Taipei (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orouji, A.A., Karimi, F. A novel fin field effect transistor by extra insulator layer for high performance nanoscale applications. J Comput Electron 14, 811–819 (2015). https://doi.org/10.1007/s10825-015-0713-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0713-1

Keywords

Navigation