Skip to main content
Log in

Structural and electronic properties of zigzag graphene nanoribbon decorated with copper cluster

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Using density functional theory, zigzag graphene nanoribbon (Z-GNR) saturated with hydrogen atoms decorated with copper clusters containing one, two and three copper atoms has been studied. It is shown that the cluster of copper, despite the number of copper atoms, tends to occupy the edge sites of Z-GNR. The quality and quantity of copper–carbon bonds, possible diffusion path and charge transfers are discussed in detail. It has been shown that in decorated Z-GNR with copper clusters, “d” and “s” orbital of copper joint with “p” orbital of carbon create a stable and strong bond. We show that copper in its individual form, transfers electrical charge to Z-GNR. In case of two and three copper atoms in a cluster, two different stable structures, stand and sleep-modes, are introduced. Based on number of copper atoms in a cluster and the modes that cluster stabilized on Z-GNR, the Fermi state in the decorated Z-GNR can shift to lower or higher energies. We also study the transformation from sleep to stand-mode and demonstrate that it is highly unlikely that any conversion happens at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We check the activity of these structures for Hydrogen Sulfide. Stand-modes, in both cluster containing two and three atoms of copper, show more activity toward \(\hbox {H}_{2}\hbox {S}\).

  2. We have checked this claim for cluster containing four copper atoms and it is correct.

References

  1. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, D., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  3. Yazyev, O.V.: A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 46(10), 2319–2328 (2013)

    Article  Google Scholar 

  4. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  5. Duttaa, S., Pati, S.K.: Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010)

    Article  Google Scholar 

  6. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  7. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  Google Scholar 

  8. Berahman, M., Sanaee, M., Ghayour, R.: A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75, 411–419 (2014)

    Article  Google Scholar 

  9. Subrahmanyam, K.S., Manna, A.K., Pati, S.K.: A study of graphene decorated with metal nanoparticles. Chem. Phys. Lett. 497, 70–75 (2010)

    Article  Google Scholar 

  10. Li, W., He, Y., Wang, L., Ding, G., Zhang, Z.Q., Lortz, R.W., Sheng, P., Wang, N.: Electron localization in metal-decorated graphene. Phys. Rev. B 84, 045431 (2011)

    Article  Google Scholar 

  11. Wu, M., Burton, J.D., Tsymbal, E.Y., Zeng, X.C., Jena, P.: Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B 87, 081406(R) (2013)

    Article  Google Scholar 

  12. Li, Y., Pathak, B., Nisar, J., Qian, Z., Ahuja, R.: Metal-decorated graphene oxide for ammonia adsorption. Europhys. Lett. 103, 28007 (2013)

    Article  Google Scholar 

  13. Gutés, A., Hsia, B., Sussman, A., Mickelson, W., Zettl, A., Carraro, C., Maboudian, R.: Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4, 438–440 (2012)

    Article  Google Scholar 

  14. Tjoa, V., Jun, W., Dravid, V., Mhaisalkar, S., Mathews, N.: Hybrid graphene-metal nanoparticle systems: electronic properties and gas interaction. J. Mater. Chem. 21, 15593–15599 (2011)

    Article  Google Scholar 

  15. Zhang, C.X., He, C., Yu, Z., Zhang, K.W., Sun, L.Z., Zhong, J.: Transport properties of zigzag graphene nanoribbons decorated by carboxyl group chains. J. Phys. Chem. C 115(44), 21893–21898 (2011)

    Article  Google Scholar 

  16. Berahman, M., Sheikhi, M.H., Zarifkar, A., Gebauer, R., Taheri, M., Asad, M.: H\(_{2}\)S Gas Sensor Based on Thin Film Graphene Nanoribbons Decorated with Copper: A First Principles Studies. Ultrafine Grained and Nano-Structured Materials, Tehran (2013)

    Google Scholar 

  17. Gorjizadeh, N., Kawazoe, Y.: Chemical functionalization of graphene nanoribbons. J. Nanomater. 2010, 513501 (2010)

    Google Scholar 

  18. Cao, C., Wu, M., Jiang, J., Cheng, H.P.: Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010)

    Article  Google Scholar 

  19. Wu, M., Liu, E.N., Ge, M.Y., Jiang, J.Z.: Stability, electronic, and magnetic behaviors of Cu adsorbed graphene: a first-principles study. Appl. Phys. Lett. 94, 102505 (2009)

    Article  Google Scholar 

  20. Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M.: Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009)

    Article  Google Scholar 

  21. Ning, Z., Chen, Z., Du, X., Ran, R., Dong, W., Chen, C.: Nickel Dimers Adsorbed on Graphene: First-Principles Study. J. Supercond. Nov. Magn. 26(12), 3515–3522 (2013)

    Article  Google Scholar 

  22. Sevinçli, H., Topsakal, M., Durgun, E., Ciraci, S.: Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 77, 195434 (2008)

    Article  Google Scholar 

  23. Rigo, V.A., Miwa, R.H., da Silva, A.J.R., Fazzio, A.: Mn dimers on graphene nanoribbons: ab initio study. J. Appl. Phys. 109, 053715 (2011)

    Article  Google Scholar 

  24. Yu, G., Lu, X., Jiang, L., Gao, W., Zheng, Y.: Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons. J. Phys. D 46, 375303 (2013)

    Article  Google Scholar 

  25. Longo, R.C., Carrete, J., Ferrer, J., Gallego, L.J.: Structural, magnetic, and electronic properties of Ni\(_{n}\) and Fe\(_{n}\) nanostructures (\(n\) = 1–4) adsorbed on zigzag graphene nanoribbons. Phys. Rev. B 81, 115418 (2010)

    Article  Google Scholar 

  26. Asad, A., Berahman, M., Sheikhi, M.H., Pour, M.F.: Hydrogen sulfide gas sensor based on thin film carbon nanotubes/graphene nanoribbons. IR Patent No. 75,680

  27. Weia, M., Chena, L., Lunb, N., Suna, Y., Lia, D., Pana, H.: Electronic and magnetic properties of copper-family-element atom adsorbed graphene nanoribbons with zigzag edges. Solid State Commun. 151(20), 1440–1443 (2011)

    Article  Google Scholar 

  28. Berahman, M., Sheikhi, M.H.: Transport properties of zigzag graphene nanoribbon decorated with copper clusters. J. Appl. Phys. 116, 09370 (2014)

    Article  Google Scholar 

  29. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 21, 395502 (2009)

    Google Scholar 

  30. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)

  31. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43 (1993)

    Google Scholar 

  32. Baishya, K., Idrobo, J.C., Öğüt, S., Yang, M., Jackson, K.A., Jellinek, J.: First-principles absorption spectra of Cun (n = 2–20) clusters. Phys. Rev. B 83, 245402 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

M. B. thanks Dr. R. Gebauer (ICTP) for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Sheikhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berahman, M., Sheikhi, M.H., Zarifkar, A. et al. Structural and electronic properties of zigzag graphene nanoribbon decorated with copper cluster. J Comput Electron 14, 270–279 (2015). https://doi.org/10.1007/s10825-014-0650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0650-4

Keywords

Navigation