Skip to main content
Log in

Modeling of characteristic parameters for nano-scale junctionless double gate MOSFET considering quantum mechanical effect

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper analytically models the characteristics parameters of nano-scale junctionless double gate MOSFETs under quantum confinement, as junctionless transistors gain advantages over their junction based counterparts recently. The models explicitly show how the device parameters like silicon channel thickness, oxide thickness, channel length etc. affect the characteristic parameters like surface potential, threshold voltage etc. when quantum mechanical effects dominate. We also study the effect of temperature on electron populations on sub-band energy levels. Variable quasi Fermi energy level is considered in this paper to increase the accuracy of the proposed models. Threshold voltage roll-off and drain induced barrier lowering are also analyzed to increase the efficacy of the models. These analytical models, valid from accumulation to depletion regimes, are validated and verified with the data obtained from Schrödinger–Poisson solver model of Technology Computer Aided Design. Simplicity of the proposed models give easy way to understand, analyze, and design Double Gate Junctionless transistors comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kundu, S.: Design methodologies for nano-electronic digital and analogue circuits. IET Circuits Devices Syst. 7(5), 221–222 (2013)

    Article  Google Scholar 

  2. Lee, C.-W., Nazarov, A.N., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., Doria, R.T., Colinge, J.-P.: Low subthreshold slope in junctionless multigate transistors. Appl. Phys. Lett. 96(10), 102106-1–102106-3 (2010)

    Google Scholar 

  3. Chiang, T.K.: A new quasi-2-D threshold voltage model for short-channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. TCAD-IEEE 59(11), 3127–3129 (2012)

    Google Scholar 

  4. Park, J.-T., Kim, J.Y., Lee, C.-W., Colinge, J.-P.: Low-temperature conductance oscillations in junctionless nanowire transistors. Appl. Phys. Lett. 97(17), 172101-1–172101-2 (2010)

    Google Scholar 

  5. Lee, C.W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices 57(3), 620–625 (2010)

    Article  Google Scholar 

  6. Lallement, C., Sallese, J.-M., Bucher, M., Grabinski, W., Fazan, Pierre C.: Accounting for quantum effects and poly-silicon depletion from weak to strong inversion in a charge-based design-oriented MOSFET model. TED 50(2), 406–417 (2003)

    Article  Google Scholar 

  7. Jazaeri, F., Barbut, L., Sallese, J.M.: Modeling and design space of junctionless symmetric DG MOSFETs with long channel. IEEE TED 60(7), 2120–2127 (2013)

    Article  Google Scholar 

  8. Sallese, J.M., Chevillon, N., Lallement, C., Iñiguez, B., Prégaldiny, F.: Charge-based modeling of junctionless double-gate field-effect transistors. IEEE TED 58(8), 2628–2637 (2011)

    Article  Google Scholar 

  9. Chen, Z., Xiao, Y., Tang, M., Xiong, Y., Huang, J., Li, J., Gu, X., Zhou, Y.: Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE TED 59(12), 3292–3298 (2012)

    Article  Google Scholar 

  10. Duarte, J.P., Choi, S.J., II Moon, D., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Electron. Devices Lett. 32(6), 704–706 (2011)

    Article  Google Scholar 

  11. Taur, Y., Chen, H.P., Wang, W., Lo, S.H., Wann, C.: On-off charge-voltage characteristics and dopant number fluctuation effects in junctionless double-gate MOSFETs. IEEE TED 59(3), 863–866 (2012)

    Article  Google Scholar 

  12. Silvaco International: Device simulator Silvaco-ATLAS user’s manual. Silvaco International, Santa Clara (2007)

  13. Lundstrom, M.S., Guo, J.: Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer, New York (2006)

    Google Scholar 

  14. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  15. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, New York (2006)

    Book  Google Scholar 

  16. Pierret, R.F.: Semiconductor Device Fundamentals. Addison-Wesley Publishing Company, Reading (1996)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the DST, Government of India for funding purpose, and all the members of Nano device simulation lab, ETCE Dept., Jadavpur University for their useful advices and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Chanda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, M., De, S. & Sarkar, C.K. Modeling of characteristic parameters for nano-scale junctionless double gate MOSFET considering quantum mechanical effect. J Comput Electron 14, 262–269 (2015). https://doi.org/10.1007/s10825-014-0648-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0648-y

Keywords

Navigation