Skip to main content
Log in

Comprehensive analysis of GR noise in InGaP–GaAs HBT by physics-based simulation and low frequency characterization

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The presence of noise in semi-conductor devices is a major drawback for good quality telecommunications or radar links. It plays an important role on the deterioration of spectral purity in frequency sources and in mixer circuits used in emission and reception in these systems. Thus, the circuit designers must take it into account in their designs by using accurate noise models of transistors. However, these models will be reliable only if the origin of the noise is well-known. The only solution to solve this problem is to have a physics-based simulator including noise simulation, whose results can be compared with noise measurements of the simulated device. This paper presents such a tool, based on a first deterministic simulation with the commercial Technology Computer Aided Design (TCAD) SENTAURUS from SYNOPSYS and whose results are transferred to a home-made tool based on the free SCILAB platform. Thus, this package enables us to simulate the generation–recombination (GR) noise due to traps generated in the device, in this case an InGaP–GaAs heterojunction bipolar transistor (HBT) from UMS foundry. The setup for low frequency (LF) noise characterization available in the lab, allowed us to compare the HBT equivalent current noise sources measured and those simulated with good agreement. This full LF noise comparison of InGaP–GaAs HBT behaviour is the first published to our knowledge and these results confirm a posteriori the pertinency of the LF noise model we developed a few years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Langevin, P.: On the theory of brownian motion. Comptes Rendus de l’Académie des Sciences 146, 530–533 (1908)

    MATH  Google Scholar 

  2. Kolmogoroff, N.: Foundations of the Theory of Probability. Chealsea, New York (1950)

    MATH  Google Scholar 

  3. Van Vliet, K.M.: Markov approach to density fluctuations due to transport and scattering I. Mathematical formalism. J. Math. Phys. 12(9), 1981 (1971)

    Article  MATH  Google Scholar 

  4. Van Der Ziel, A.: History of noise research. Adv. Electron. Electron Phys. 50, 351–409 (1980)

    Article  Google Scholar 

  5. Lax, M., Mengert, P.: Influence of trapping, diffusion and recombination on carrier concentration fluctuations. J. Phys. Chem. Solids 14, 248–267 (1960)

    Article  Google Scholar 

  6. Van Vliet, K.M., Fassett, J.R.: Fluctuation Phenomena in Solids. In: Burgess, R.E. (Ed.) Academic Press, New York (1965)

  7. Shockley, W., Copeland, J.A., James, R.P.: The Impedance Field Method of Noise Calculation in Active Semiconductor Devices. In: Lowdin, P-O (ed.), Academic press, New York (1966)

  8. Nallatamby, J.-C., et al.: An advanced low-frequency noise model of GaInP–GaAs HBT, for accurate prediction of phase noise in oscillators. IEEE Trans. Microw. Theory Tech. 53(5), 1601–1612 (2005)

    Article  Google Scholar 

  9. Vapaille, A.: Physique des Dispositifs à Semi-conducteurs: Electronique du Silicium Homogène. Masson, Paris (1970)

    Google Scholar 

  10. Shockley, W., Read Jr, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)

    Article  MATH  Google Scholar 

  11. Hall, R.N.: Electron-hole recombination in Germanium. Phys. Rev. 87, 387 (1952)

    Article  Google Scholar 

  12. Van Vliet, C.M.: Macroscopic and microscopic methods for noise in devices. IEEE Trans. Electron Dev. 41(11), 1902–1915 (1994)

    Article  Google Scholar 

  13. Nougier, J.-P.: III–V Microelectronics. Elsevier, Amsterdam (1991)

    Google Scholar 

  14. Nallatamby, J.-C., et al.: Numerical simulation and characterization of trapping noise in InGaP–GaAs heterojunctions devices at high injection. Solid State Electron. 81, 35–44 (2013)

    Article  Google Scholar 

  15. Fabrizio, B., Giovanni, G.: Noise in Semiconductor Devices: Modeling and Simulation. Springer, Berlin (2001)

    Google Scholar 

  16. Bonani, F., Ghione, G.: Generation–recombination noise modelling in semiconductor devices through population or approximate equivalent current density fluctuations. Solid State Electron. 43(2), 285–295 (1999)

    Article  Google Scholar 

  17. Hou, F.-C., Bosman, G., Law, M.E.: Characterization of generation–recombination noise using a physics-based device noise simulator. Microelectron. Reliab. 40(11), 1883–1886 (2000)

    Article  Google Scholar 

  18. Driedonks, F., Zijlstra, J.J.: Theory of trapping noise of solid state single injection diodes. Physica 50(3), 331–347 (1970)

    Article  Google Scholar 

  19. Hou, F.C., Bosman, G., Law, M.E.: Maximum allowable bulk defect density for generation–recombination noise-free device operation. IEEE Trans. Electron Dev. 49(11), 2080–2082 (2002)

    Article  Google Scholar 

  20. Zocchi, F.E.: Current and voltage noise spectrum due to generation and recombination fluctuations in semiconductors. Phys. Rev. B 73(035203), 1–8 (2006)

    Google Scholar 

  21. Gomila, G., Reggiani, L.: Size effects on generation–recombination noise. Appl. Phys. Lett. 81(23), 4380–4382 (2002)

    Article  Google Scholar 

  22. Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A.: A review of some charge transport properties of silicon. Solid State Electron. 20(2), 77–89 (1977)

    Article  Google Scholar 

  23. Bary, L., et al.: Transimpedance amplifier-based full low-frequency noise characterization setup for Si/SiGe HBTs. IEEE Trans. Electron Dev. 48(4), 767–773 (2001)

    Article  Google Scholar 

  24. Borgarino, M.: Full direct low frequency noise characterization of GaAs heterojunction bipolar transistors. Solid State Electron. 49(8), 1361–1369 (2005)

    Article  Google Scholar 

  25. Bruce, S., Vandamme, L., Rydberg, A.: Improved correlation measurements using voltage and transimpedance amplifiers in low-frequency noise characterization of bipolar transistors. IEEE Trans. Electron Dev. 47(17), 1772–1773 (2000)

    Article  Google Scholar 

  26. Jarrix, S., Delseny, C., Pascal, F., Lecoy, G.: Noise correlation measurements in bipolar transistors. I. Theoretical expressions and extracted current spectral densities. J. Appl. Phys. 81(6), 2651–2657 (1997)

    Article  Google Scholar 

  27. Neri, B., Pellegrini, B., Saletti, R.: Ultra low-noise preamplifier for low-frequency noise measurements in electron devices. IEEE Trans. Instrum. Meas. 40(1), 2–6 (1991)

    Article  Google Scholar 

  28. Lisboa de Souza, A.A., Nallatamby, J.-C., Prigent, M.: Low-frequency noise measurements of bipolar devices under high DC current density: whether transimpedance or voltage amplifiers. In: 2006 European Microwave Integrated Circuits Conference, Manchester, Sept 2006

  29. Barnes, J.J., Lomax, R.J., Haddad, G.I.: Finite-element simulation of GaAs MESFET’s with lateral doping profiles and submicron gates. IEEE Trans. Electron Dev. 23(9), 1042–1048 (1976)

    Article  Google Scholar 

  30. Cherkaoui, K., et al.: Defect study of GaInP/GaAs based heterojunction bipolar transistor emitter layer. J. Appl. Phys. 92(5), 2803–2806 (2002)

    Article  Google Scholar 

  31. Miller, G.L., Lang, D.V., Kimerling, L.C.: Capacitance transient spectroscopy. Ann. Rev. Mater. Sci. 7, 377–448 (1977)

    Article  Google Scholar 

  32. SYNOPSYS. http://www.synopsys.com (2010). Accessed 30 0ct 2014

  33. Hooge, F.N.: 1/f noise sources. IEEE Trans. Electron Dev. 41(11), 1926–1935 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Nallatamby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallatamby, JC., Laurent, S., Prigent, M. et al. Comprehensive analysis of GR noise in InGaP–GaAs HBT by physics-based simulation and low frequency characterization. J Comput Electron 14, 4–14 (2015). https://doi.org/10.1007/s10825-014-0639-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0639-z

Keywords

Navigation