Skip to main content
Log in

Hierarchies of transport equations for nanopores

Equations derived from the Boltzmann equation and the modeling of confined structures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We review transport equations and their usage for the modeling and simulation of nanopores. First, the significance of nanopores and the experimental progress in this area are summarized. Then the starting point of all classical and semiclassical considerations is the Boltzmann transport equation as the most general transport equation. The derivation of the drift-diffusion equations from the Boltzmann equation is reviewed as well as the derivation of the Navier–Stokes equations. Nanopores can also be viewed as a special case of a confined structure and hence as giving rise to a multiscale problem, and therefore we review the derivation of a transport equation from the Boltzmann equation for such confined structures. Finally, the state of the art in the simulation of nanopores is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pennisi, E.: Search for pore-fection. Science 336(6081), 534–537 (2012)

    Article  MathSciNet  Google Scholar 

  2. Branton, D., et al.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146–1153 (2008)

    Article  Google Scholar 

  3. Wanunu, M.: Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9(2), 125–158 (2012)

    Article  Google Scholar 

  4. Hall, A.R., Scott, A., Rotem, D., Mehta, K.K., Bayley, H., Dekker, C.: Hybrid pore formation by directed insertion of \(\alpha \)-haemolysin into solid-state nanopores. Nat. Nanotechnol. 5, 874–877 (2010)

    Article  Google Scholar 

  5. Bell, N.A.W., Engst, C.R., Ablay, M., Divitini, G., Ducati, C., Liedl, T., Keyser, U.F.: DNA origami nanopores. Nano Lett. 12(1), 512–517 (2012)

    Article  Google Scholar 

  6. Burns, J.R., Stulz, E., Howorka, S.: Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13(6), 2351–2356 (2013)

    Article  Google Scholar 

  7. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988)

    Book  MATH  Google Scholar 

  8. Maxwell, J.C.: On the dynamical theory of gases. Phil. Trans. Roy. Soc. (London) 157, 49–88 (1867)

    Article  Google Scholar 

  9. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin (1994)

    Book  MATH  Google Scholar 

  10. Ben Abdallah, N.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37(7), 3306–3333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben Abdallah, N., Degond, P., Génieys, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Statist. Phys. 84(1–2), 205–231 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heitzinger, Clemens, Ringhofer, Christian: A transport equation for confined structures derived from the Boltzmann equation. Commun. Math. Sci. 9(3), 829–857 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ben Abdallah, N., Degond, P., Markowich, P., Schmeiser, C.: High field approximations of the spherical harmonics expansion model for semiconductors. Z. Angew. Math. Phys. 52(2), 201–230 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer-Verlag, Wien (1990)

    Book  MATH  Google Scholar 

  15. Anile, A.M., Allegretto, W., Ringhofer, C.: Mathematical Problems in Semiconductor Physics. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  16. Baumgartner, Stefan, Heitzinger, Clemens: Existence and local uniqueness for 3d self-consistent multiscale models for field-effect sensors. Commun. Math. Sci. 10(2), 693–716 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer-Verlag, Wien (1986)

    Book  Google Scholar 

  18. Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Statist. Phys. 118, 625–667 (2005)

    Article  MATH  Google Scholar 

  19. Baumgartner, Stefan, Heitzinger, Clemens: A one-level FETI method for the drift-diffusion-Poisson system with discontinuities at an interface. J. Comput. Phys. 243, 74–86 (June 2013)

  20. Rubinstein, I.: Electro-Diffusion of Lons. SIAM, Philadelpha, PA (1990)

    Book  Google Scholar 

  21. Ramírez, P., Mafé, S., Aguilella, V.M., Alcaraz, A.: Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport. Phys. Rev. E (3), 68(1):011910/1-8, (July 2003)

  22. van der Straaten, T.A., Tang, J.M., Ravaioli, U., Eisenberg, R.S., Aluru, N.R.: Simulating ion permeation through the ompF porin ion channel using three-dimensional drift-diffusion theory. J. Comp. Electron. 2, 29–47 (2003)

    Article  Google Scholar 

  23. Gardner, C.L., Nonner, W., Eisenberg, R.S.: Electrodiffusion model simulation of ionic channels: 1D simulations. J. Comput. Electron. 3, 25–31 (2004)

    Article  Google Scholar 

  24. Coalson, R.D., Kurnikova, M.G.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4(1), 81–93 (2005)

    Article  Google Scholar 

  25. Cervera, J., Schiedt, B., Ramírez, P.: A Poisson/Nernst–Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71(1), 35–41 (2005)

    Article  Google Scholar 

  26. Liu, Y., Sauer, J., Dutton, R.W.: Effect of electro-diffusion current flow on electrostatic screening in aqueous pores. J. Appl. Phys. 103, 084701 (2008)

    Article  Google Scholar 

  27. Cervera, J., Ramírez, P., Manzanares, J.A., Mafé, S.: Incorporating ionic size in the transport equations for charged nanopores. Microfluid. Nanofluid. 9(1), 41–53 (2010)

    Article  Google Scholar 

  28. Gardner, C.L., Jones, J.R.: Electrodiffusion model simulation of the potassium channel. J. Theoret. Biol. 291, 10–13 (2011)

  29. Lu, B., Hoogerheide, D.P., Zhao, Q., Yu, D.: Effective driving force applied on DNA inside a solid-state nanopore. Phys. Rev. E 86(1), 011921 (2012)

    Article  Google Scholar 

  30. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices ED–11, 455–465 (1964)

    Article  Google Scholar 

  31. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices ED 16(1), 64–77 (1969)

    Article  Google Scholar 

  32. Kerkhoven, T.: A proof of convergence of Gummel’s algorithm for realistic device geometries. SIAM J. Numer. Anal. 23(6), 1121–1137 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gartland Jr, E.C.: On the uniform convergence of the Scharfetter–Gummel discretization in one dimension. SIAM J. Numer. Anal. 30(3), 749–758 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mao, M., Ghosal, S., Hu, G.: Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage. Nanotechnology 24(24), 245202 (2013)

    Article  Google Scholar 

  35. Ai, Y., Qian, S.: Electrokinetic particle translocation through a nanopore. Phys. Chem. Chem. Phys. 13(9), 4060–4071 (2011)

    Article  Google Scholar 

  36. van Dorp, S., Keyser, U.F., Dekker, N.H., Dekker, C., Lemay, S.G.: Origin of the electrophoretic force on DNA in solid-state nanopores. Nat. Phys. 5, 347–351 (2009)

    Article  Google Scholar 

  37. Jubery, T.Z., Prabhu, A.S., Kim, M.J., Dutta, P.: Modeling and simulation of nanoparticle separation through a solid-state nanopore. Electrophoresis 33(2), 325–333 (2012)

    Article  Google Scholar 

  38. Bearden, S., Zhang, G.: The effects of the electrical double layer on giant ionic currents through single-walled carbon nanotubes. Nanotechnology 24(12), 125204 (2013)

    Article  Google Scholar 

  39. Liu, Y., Huber, D.E., Tabard-Cossa, V., Dutton, R.W.: Descreening of field effect in electrically gated nanopores. Appl. Phys. Lett. 97(1–3), 143109 (2010)

    Article  Google Scholar 

  40. Bhatia, S., Nicholson, D.: Molecular transport in nanopores. J. Chem. Phys. 119(3), 1719–1730 (2013)

    Article  Google Scholar 

  41. Joseph, S., Guan, W., Reed, M.A., Krstic, P.S.: A long DNA segment in a linear nanoscale Paul trap. Nanotechnology 21(1), 015103 (2010)

    Article  Google Scholar 

  42. Wei, G.-W., Zheng, Q., Chen, Z., Xia, K.: Variational multiscale models for charge transport. SIAM Rev. 54(4), 699–754 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author acknowledges support by the FWF (Austrian Science Fund) START project No. Y660 PDE Models for Nanotechnology. The second author acknowledges support by NSF Grant 11-07465 (KI-Net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Heitzinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitzinger, C., Ringhofer, C. Hierarchies of transport equations for nanopores. J Comput Electron 13, 801–817 (2014). https://doi.org/10.1007/s10825-014-0586-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0586-8

Keywords

Navigation